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ECG Monitoring Tools
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Use Case Scenarios
• Palpitations



Case Presentation
• 50-year-old female with hypertension and Sjogren's syndrome reports 

a several year complaint of palpitations associated with light 
headedness.

• Episodes occur every few weeks and last 5-10 minutes.
• There has been no ECG documentation obtained during her typical 

episode. 
• Her baseline ECG and echocardiogram are entirely normal.
• She presents for further evaluation

– CHA2DS2-VASc = 2 (if she had atrial fibrillation).



Smartphone-based Diagnosis

• Cheap
• Owned by the patient
• Real time
• Long term
• High fidelity recordings
• No intermediary between patient and doctor
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Use Case Scenarios
• Palpitations
• Syncope
• Atrial fibrillation
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Use Case Scenarios
• Palpitations
• Syncope
• Atrial fibrillation

– Suspected
• High-risk patients



Screening for AF
Recommendations Class Level

Opportunistic screening for AF is recommended 
by pulse taking or ECG rhythm strip in patients 
>65 years of age

I B

In stroke patients, additional ECG monitoring by 
long-term non-invasive ECG monitors or 
implanted loop recorders should be considered to 
document silent AF

IIa B

Systematic ECG screening may be considered to 
detect AF in patients aged >75 years, or those at 
high stroke risk

IIb B

ESC 2016 AF Guidelines. Kirchhof P et al. Eur Heart J. 2016;37:2893-962.



Steinhubl SR et al.
JAMA. 2018;320:146-55.

mSToPS Trial



Use Case Scenarios
• Palpitations
• Syncope
• Atrial fibrillation

– Suspected
• High-risk patients
• Cryptogenic stroke



NOAC Trials in Cryptogenic Stroke Patients
• RE-SPECT ESUS (NCT02239120)

– ~6000 patients with ESUS (non-lacunar infarct)
• ≥60 years of age with at least one additional risk factor for stroke

– Randomized to aspirin 100 mg daily or dabigatran (110 or 150 mg twice daily)
– Primary outcome: time to first recurrent stroke

• NAVIGATE ESUS (NCT02313909)
– ~7000 patients with ESUS (non-lacunar infarct)

• ≥50 years of age
– Randomized to aspirin 100 mg or rivaroxaban 15 mg daily
– Primary outcome: time to first recurrent stroke or systemic embolism



Screening for AF in Cryptogenic Stroke 
Patients: AECG Monitoring

Gladstone DJ et al. 
N Engl J Med. 

2014;370:2467-77.



Screening for AF in Cryptogenic Stroke 
Patients: CRYSTAL AF 

Sanna T et al. N Engl J Med. 2014;370:2478-86.



Use Case Scenarios
• Palpitations
• Syncope
• Atrial fibrillation

– Suspected
• High risk patients
• Cryptogenic stroke
• Post-cavotricuspid isthmus ablation



Use Case Scenarios
• Palpitations
• Syncope
• Atrial fibrillation

– Suspected
– Known



Case Presentation
• 74-year-old male with hypertension and remote history of SVT 

ablation.
• A year and a half ago, he had a stress echocardiogram. He exercised 

for 6 ½ minutes on a Bruce protocol. The exam was normal.
• He recently noticed that his heart rate was elevated while at the gym. 

He had no symptoms referable to a rate.
• An ECG demonstrated atrial fibrillation with rapid ventricular response. 

An echocardiogram demonstrated a left atrial diameter of 3.7 cm, left 
atrial volume index of 31.2 mL/m², a 4.4 cm aortic root, and an ejection 
fraction of 30%.

• He was referred for evaluation; an ECG showed sinus rhythm. 
(CHA2DS2-VASc = 2)



Case Presentation



Duration vs Burden

Go AS, et al. JAMA Cardiol. 2018;3(7):601-608. 



Duration vs Burden

JAMA Cardiology 2018



Van Gelder IC et al. Eur Heart J 2017

ASSERT Sub-study

Van Gelder IC et al. Eur 

Heart J. 2017;38:1339-44.



ECG Monitoring Tools for Diagnosis and Evaluation

Charitos EI et al. Circulation. 

2012;126:806-14.



Case Presentation
• 49-year-old male with hypertension, diabetes mellitus, obstructive 

sleep apnea, and paroxysmal atrial fibrillation
– CHA2DS2-VASc score = 2

• He underwent cryoballoon based pulmonary vein isolation on May 15, 
2013
– Last known recurrence of AF occurred on May 30, 2013
– He is maintained on rivaroxaban 20 mg daily, which he wishes to 

discontinue

How do you tell a patient like this that he will need 

oral anticoagulation for the rest of his life?



J Cardiovasc Electrophysiol.

2014;25:591-6.

Pulse Check

• 1990 patients
• CHADS2 

– 0    (n=840, 42%)
– 1    (n=796, 40%)
– ≥2  (n=354, 18%)

• Warfarin stopped in half
• 16 TIAs/stroke (0.2%/patient-year)

– 12 (75%) of the 16 patients had known recurrent AF



AF and Short-term Stroke Risk

Turakhia MP et al. Circ Arrhythm Electrophysiol. 2015;8:1050-7. 



Duration of Follow-up: Very Late Recurrences of AF

Steinberg JS, Mittal S, et al.
Heart Rhythm. 2014;11:771-6.



The Choices That Must Be Made
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Case 1

! 51 yo man comes in with this 
message on his smartwatch 

! PMH: hypertension, diabetes 
! ECG: NSR 
! Echo: normal 
! 2-week ambulatory ECG: 

normal
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77% of US

Pew Research, 2016; Forbes, 2018



77% of US

Pew Research, 2016; Forbes, 2018

! 13%, mostly millenials 
! 48% YOY in US
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Wearable Fitness Trackers and Heart Disease
What Are Fitness Trackers?
Fitness or activity trackers are devices with special sensors that can
monitor your movement. Often referred to as “wearables,” these de-
vices are typically worn around the wrist as a bracelet or embed-
ded in a mobile phone or wristwatch. They can measure footsteps
taken, distance traveled, type of movement (walk, run, or jog), and
quality and duration of sleep. Some wearables have additional sen-
sors to monitor heart rate, blood pressure, blood oxygen levels, and
perspiration. Data from wearables can be transferred to a smart-
phone, computer, database, or website. Connected smartphones
and wearables can alarm or vibrate to encourage behaviors, such as
exercise or sleep. As wearable technology matures, these devices
will likely cost less, and it may become easier to share data from them
with your health care professional, clinic, or hospital.

Can Fitness Trackers Prevent or Treat Heart Disease?
Professional cardiology society guidelines recommend that most pa-
tients participate in regular exercise. However, these societies have
not yet given recommendations on how fitness trackers should be
used because no long-term studies have been completed that have
tested whether the use of fitness trackers can help prevent heart
disease. Also, the accuracy of most wearables has not been verified
in clinical studies. In fact, some devices may provide inaccurate mea-
surements, particularly during intensive exercise.

What Are the Benefits of Using a Fitness Tracker?
Despite these limitations, fitness trackers still may have benefits for
you. Physical inactivity is an important risk factor for heart disease.
A wearable device can help you set realistic goals at any level of ac-
tivity or fitness and can help you monitor your progress. Many fit-
ness trackers allow you to review your exercise patterns over the pre-
vious weeks and months. By helping you monitor your activity
patterns, these devices may encourage regular exercise. Previous
studies suggest that fitness trackers increase physical activity and
may even promote weight loss. With some devices, websites, or
apps, you can even share your exercise progress with your physi-
cian or with family members. Therefore, in the right context, a fit-
ness tracker may provide the motivation and tools to maintain an
active lifestyle and promote healthy habits.

What Is the Future of Fitness Trackers?
As more patients and clinicians become familiar with fitness track-
ers, these devices could play a larger role in health care. For example,
some electronic health record systems allow you to upload wearable

data directly into your medical record. Several health insurance plans
even offer incentives to members for achieving activity goals. Like mo-
bile phones, these devices may one day become an integral part of
society and health care. Ongoing and future studies will be needed
to determine whether they can actually reduce the risk of develop-
ing heart disease and its attendant complications.

Authors: Daniel W. Kaiser, MD; Robert A. Harrington, MD;
Mintu P. Turakhia, MD, MAS

Published Online: April 13, 2016. doi:10.1001/jamacardio.2016.0354.
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information and recommendations appearing on this page are appropriate in most
instances, but they are not a substitute for medical diagnosis. For specific information
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consult your physician. This page may be photocopied noncommercially by physicians
and other health care professionals to share with patients. To purchase bulk reprints,
call (312) 464-0776.
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• Continuous electrode recording 
is difficult to impossible 

• Real-time versus offline 
processing 

• Battery drain 
• Exercise 
• Compliance 
•Memory, hardware is cheap

Design challenges of a wearable
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[1] [2] [3]

[1] Qualifying hardware and software criteria are checked directly. Participants are routed to the app on their phone 
to complete study enrollment.
[2] The home page displays the number of days the participant has been in the study.
[3] Participants receive notifications on their watch directing them to the Apple Heart Study app on their phone when 
an irregular heart rhythm is observed.

Data Supplement B: Apple Heart Study App Wireframes - Watch
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Effect of a Home-Based Wearable Continuous ECG Monitoring
Patch on Detection of Undiagnosed Atrial Fibrillation
The mSToPS Randomized Clinical Trial
Steven R. Steinhubl, MD; Jill Waalen, MD, MPH; Alison M. Edwards, MStat; Lauren M. Ariniello, BS; Rajesh R. Mehta, RPh, MS; Gail S. Ebner, BS;
Chureen Carter, PharmD, MS; Katie Baca-Motes, MBA; Elise Felicione, MPH, MBA; Troy Sarich, PhD; Eric J. Topol, MD

IMPORTANCE Opportunistic screening for atrial fibrillation (AF) is recommended, and
improved methods of early identification could allow for the initiation of appropriate
therapies to prevent the adverse health outcomes associated with AF.

OBJECTIVE To determine the effect of a self-applied wearable electrocardiogram (ECG) patch
in detecting AF and the clinical consequences associated with such a detection strategy.

DESIGN, SETTING, AND PARTICIPANTS A direct-to-participant randomized clinical trial and
prospective matched observational cohort study were conducted among members of a large
national health plan. Recruitment began November 17, 2015, and was completed on October
4, 2016, and 1-year claims-based follow-up concluded in January 2018. For the clinical trial,
2659 individuals were randomized to active home-based monitoring to start immediately or
delayed by 4 months. For the observational study, 2 deidentified age-, sex- and
CHA2DS2-VASc–matched controls were selected for each actively monitored individual.

INTERVENTIONS The actively monitored cohort wore a self-applied continuous ECG
monitoring patch at home during routine activities for up to 4 weeks, initiated either
immediately after enrolling (n = 1364) or delayed for 4 months after enrollment (n = 1291).

MAIN OUTCOMES AND MEASURES The primary end point was the incidence of a new diagnosis
of AF at 4 months among those randomized to immediate monitoring vs delayed monitoring.
A secondary end point was new AF diagnosis at 1 year in the combined actively monitored
groups vs matched observational controls. Other outcomes included new prescriptions for
anticoagulants and health care utilization (outpatient cardiology visits, primary care visits, or
AF-related emergency department visits and hospitalizations) at 1 year.

RESULTS The randomized groups included 2659 participants (mean [SD] age, 72.4 [7.3] years;
38.6% women), of whom 1738 (65.4%) completed active monitoring. The observational study
comprised 5214 (mean [SD] age, 73.7 [7.0] years; 40.5% women; median CHA2DS2-VASc score,
3.0), including 1738 actively monitored individuals from the randomized trial and 3476 matched
controls. In the randomized study, new AF was identified by 4 months in 3.9% (53/1366) of the
immediate group vs 0.9% (12/1293) in the delayed group (absolute difference, 3.0% [95% CI,
1.8%-4.1%]). At 1 year, AF was newly diagnosed in 109 monitored (6.7 per 100 person-years) and
81 unmonitored (2.6 per 100 person-years; difference, 4.1 [95% CI, 3.9-4.2]) individuals. Active
monitoring was associated with increased initiation of anticoagulants (5.7 vs 3.7 per 100 person-
years; difference, 2.0 [95% CI, 1.9-2.2]), outpatient cardiology visits (33.5 vs 26.0 per 100 person-
years; difference, 7.5 [95% CI, 7.2-7.9), and primary care visits (83.5 vs 82.6 per 100 person-years;
difference, 0.9 [95% CI, 0.4-1.5]). There was no difference in AF-related emergency department
visits and hospitalizations (1.3 vs 1.4 per 100 person-years; difference, 0.1 [95% CI, −0.1 to 0]).

CONCLUSIONS AND RELEVANCE Among individuals at high risk for AF, immediate monitoring
with a home-based wearable ECG sensor patch, compared with delayed monitoring, resulted
in a higher rate of AF diagnosis after 4 months. Monitored individuals, compared with
nonmonitored controls, had higher rates of AF diagnosis, greater initiation of anticoagulants,
but also increased health care resource utilization at 1 year.

TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02506244
JAMA. 2018;320(2):146-155. doi:10.1001/jama.2018.8102

Editorial pages 137 and 139

Video and Supplemental
content

CME Quiz at
jamanetwork.com/learning
and CME Questions page 199
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Topol); Wave Research Center,
La Jolla, California (Steinhubl, Ebner,
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Tison G, et al. JAMA Cardiology 2018.

Passive Detection of Atrial Fibrillation
Using a Commercially Available Smartwatch
Geoffrey H. Tison, MD, MPH; José M. Sanchez, MD; Brandon Ballinger, BS; Avesh Singh, MS; Jeffrey E. Olgin, MD;
Mark J. Pletcher, MD, MPH; Eric Vittinghoff, PhD; Emily S. Lee, BA; Shannon M. Fan, BA; Rachel A. Gladstone, BA;
Carlos Mikell, BS; Nimit Sohoni, BS; Johnson Hsieh, MS; Gregory M. Marcus, MD, MAS

IMPORTANCE Atrial fibrillation (AF) affects 34 million people worldwide and is a leading cause
of stroke. A readily accessible means to continuously monitor for AF could prevent large
numbers of strokes and death.

OBJECTIVE To develop and validate a deep neural network to detect AF using smartwatch
data.

DESIGN, SETTING, AND PARTICIPANTS In this multinational cardiovascular remote cohort study
coordinated at the University of California, San Francisco, smartwatches were used to obtain
heart rate and step count data for algorithm development. A total of 9750 participants
enrolled in the Health eHeart Study and 51 patients undergoing cardioversion at the
University of California, San Francisco, were enrolled between February 2016 and March 2017.
A deep neural network was trained using a method called heuristic pretraining in which the
network approximated representations of the R-R interval (ie, time between heartbeats)
without manual labeling of training data. Validation was performed against the reference
standard 12-lead electrocardiography (ECG) in a separate cohort of patients undergoing
cardioversion. A second exploratory validation was performed using smartwatch data from
ambulatory individuals against the reference standard of self-reported history of persistent
AF. Data were analyzed from March 2017 to September 2017.

MAIN OUTCOMES AND MEASURES The sensitivity, specificity, and receiver operating
characteristic C statistic for the algorithm to detect AF were generated based on the
reference standard of 12-lead ECG–diagnosed AF.

RESULTS Of the 9750 participants enrolled in the remote cohort, including 347 participants
with AF, 6143 (63.0%) were male, and the mean (SD) age was 42 (12) years. There were more
than 139 million heart rate measurements on which the deep neural network was trained. The
deep neural network exhibited a C statistic of 0.97 (95% CI, 0.94-1.00; P < .001) to detect
AF against the reference standard 12-lead ECG–diagnosed AF in the external validation cohort
of 51 patients undergoing cardioversion; sensitivity was 98.0% and specificity was 90.2%.
In an exploratory analysis relying on self-report of persistent AF in ambulatory participants,
the C statistic was 0.72 (95% CI, 0.64-0.78); sensitivity was 67.7% and specificity was 67.6%.

CONCLUSIONS AND RELEVANCE This proof-of-concept study found that smartwatch
photoplethysmography coupled with a deep neural network can passively detect AF but with
some loss of sensitivity and specificity against a criterion-standard ECG. Further studies will
help identify the optimal role for smartwatch-guided rhythm assessment.
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justed odds ratio of 1.98 (95% CI, 1.48-2.65; P = .02) for per-
sistent AF. Table 3 shows the performance characteristics of
the algorithm in both validation cohorts. In the setting of the
low (4%) AF prevalence in the remote cohort, the positive pre-
dictive value was low.

Discussion
We demonstrate that a commercially available smartwatch can
passively detect AF using a readily available mobile application
usingadeepneuralnetwork.Inexternalvalidationusingthestan-
dard 12-lead ECG as the reference, algorithm performance
achieved a C statistic of 0.97. The passive detection of AF from
free-living smartwatch data has substantial clinical implications.
Importantly, the accuracy of detecting self-reported AF in an am-
bulatory setting was more modest (C statistic of 0.72). Although
the deep neural network’s AF classification in the exploratory
analysisexhibitedhigheroddsratiosthanothermeasuredAFrisk
factors, this proof-of-concept experiment likely demonstrates
the challenges of accurately detecting ambulatory arrhythmia
among constantly mobile individuals in natural environments.

Atrial fibrillation is the leading cause of stroke, and its de-
tection is difficult because of its often asymptomatic nature
and paroxysmal frequency.1,4,10,11,14 Readily accessible means
to detect and screen for silent AF are needed. Even though
monitors with automated capabilities, such as implantable loop
recorders, can be used to detect AF, they are invasive, expen-
sive, and inconvenient.26,27 The ideal instrument for AF de-
tection would be noninvasive and provide real-time, accu-
rate AF detection in a passive fashion—specifically, not
requiring the user to remember to perform some action and
not limited to any one snapshot in time. Smartwatches are well
positioned to accomplish these goals in a cost-efficient and re-
source-efficient fashion. Wearable technology has shown a
steady increase in global usage,28 and the smartwatch, most
popular among all wearable sensors, is projected to reach 55
million global shipments by 2020.29

Prior efforts to automatically detect AF among free-
living participants have predominantly used ambulatory blood
pressure monitors,30 although some recent studies21,31 have
used smartphones and wearable devices. Two studies20,21

showed that AF can be detected using a photoplethysmogra-
phy waveform obtained via the iPhone camera. Similar to the

Figure 1. T-Distributed Stochastic Neighbor Embedding Visualization of the Deep Neural Network’s Last Layer
Using Data From the Cardioversion Cohort
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This t-distributed stochastic neighbor embedding, which is a technique that
assists in visualizing high-dimensional data in 2 dimensions, depicts the deep
neural network’s internal representation of the data derived from the last
recurrent layer of the neural network. Each point represents a 10-minute
segment of data from our validation (cardioversion) data set; orange points
represent atrial fibrillation segments (precardioversion) and blue points
represent normal sinus rhythm segments (postcardioversion). The neural
network has largely clustered atrial fibrillation from normal sinus rhythm

segments, as depicted when plotted on 2 dimensions (axes) that were chosen
arbitrarily. Most points classified as normal sinus rhythm are in the upper part of
the visualization, while atrial fibrillation points are separated in alternate
clusters. The upper inset shows an example of raw smartwatch heart rate data
associated with normal sinus rhythm, and the lower inset shows raw atrial
fibrillation smartwatch data; each vertical bar represents a 5-second average
heart rate color-coded by beats per minute (BPM; blue, <60; orange, 60-99;
red, !100).
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justed odds ratio of 1.98 (95% CI, 1.48-2.65; P = .02) for per-
sistent AF. Table 3 shows the performance characteristics of
the algorithm in both validation cohorts. In the setting of the
low (4%) AF prevalence in the remote cohort, the positive pre-
dictive value was low.
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We demonstrate that a commercially available smartwatch can
passively detect AF using a readily available mobile application
usingadeepneuralnetwork.Inexternalvalidationusingthestan-
dard 12-lead ECG as the reference, algorithm performance
achieved a C statistic of 0.97. The passive detection of AF from
free-living smartwatch data has substantial clinical implications.
Importantly, the accuracy of detecting self-reported AF in an am-
bulatory setting was more modest (C statistic of 0.72). Although
the deep neural network’s AF classification in the exploratory
analysisexhibitedhigheroddsratiosthanothermeasuredAFrisk
factors, this proof-of-concept experiment likely demonstrates
the challenges of accurately detecting ambulatory arrhythmia
among constantly mobile individuals in natural environments.

Atrial fibrillation is the leading cause of stroke, and its de-
tection is difficult because of its often asymptomatic nature
and paroxysmal frequency.1,4,10,11,14 Readily accessible means
to detect and screen for silent AF are needed. Even though
monitors with automated capabilities, such as implantable loop
recorders, can be used to detect AF, they are invasive, expen-
sive, and inconvenient.26,27 The ideal instrument for AF de-
tection would be noninvasive and provide real-time, accu-
rate AF detection in a passive fashion—specifically, not
requiring the user to remember to perform some action and
not limited to any one snapshot in time. Smartwatches are well
positioned to accomplish these goals in a cost-efficient and re-
source-efficient fashion. Wearable technology has shown a
steady increase in global usage,28 and the smartwatch, most
popular among all wearable sensors, is projected to reach 55
million global shipments by 2020.29

Prior efforts to automatically detect AF among free-
living participants have predominantly used ambulatory blood
pressure monitors,30 although some recent studies21,31 have
used smartphones and wearable devices. Two studies20,21

showed that AF can be detected using a photoplethysmogra-
phy waveform obtained via the iPhone camera. Similar to the
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neural network’s internal representation of the data derived from the last
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segment of data from our validation (cardioversion) data set; orange points
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segments, as depicted when plotted on 2 dimensions (axes) that were chosen
arbitrarily. Most points classified as normal sinus rhythm are in the upper part of
the visualization, while atrial fibrillation points are separated in alternate
clusters. The upper inset shows an example of raw smartwatch heart rate data
associated with normal sinus rhythm, and the lower inset shows raw atrial
fibrillation smartwatch data; each vertical bar represents a 5-second average
heart rate color-coded by beats per minute (BPM; blue, <60; orange, 60-99;
red, !100).
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IMPORTANCE Atrial fibrillation (AF) affects 34 million people worldwide and is a leading cause
of stroke. A readily accessible means to continuously monitor for AF could prevent large
numbers of strokes and death.

OBJECTIVE To develop and validate a deep neural network to detect AF using smartwatch
data.

DESIGN, SETTING, AND PARTICIPANTS In this multinational cardiovascular remote cohort study
coordinated at the University of California, San Francisco, smartwatches were used to obtain
heart rate and step count data for algorithm development. A total of 9750 participants
enrolled in the Health eHeart Study and 51 patients undergoing cardioversion at the
University of California, San Francisco, were enrolled between February 2016 and March 2017.
A deep neural network was trained using a method called heuristic pretraining in which the
network approximated representations of the R-R interval (ie, time between heartbeats)
without manual labeling of training data. Validation was performed against the reference
standard 12-lead electrocardiography (ECG) in a separate cohort of patients undergoing
cardioversion. A second exploratory validation was performed using smartwatch data from
ambulatory individuals against the reference standard of self-reported history of persistent
AF. Data were analyzed from March 2017 to September 2017.

MAIN OUTCOMES AND MEASURES The sensitivity, specificity, and receiver operating
characteristic C statistic for the algorithm to detect AF were generated based on the
reference standard of 12-lead ECG–diagnosed AF.

RESULTS Of the 9750 participants enrolled in the remote cohort, including 347 participants
with AF, 6143 (63.0%) were male, and the mean (SD) age was 42 (12) years. There were more
than 139 million heart rate measurements on which the deep neural network was trained. The
deep neural network exhibited a C statistic of 0.97 (95% CI, 0.94-1.00; P < .001) to detect
AF against the reference standard 12-lead ECG–diagnosed AF in the external validation cohort
of 51 patients undergoing cardioversion; sensitivity was 98.0% and specificity was 90.2%.
In an exploratory analysis relying on self-report of persistent AF in ambulatory participants,
the C statistic was 0.72 (95% CI, 0.64-0.78); sensitivity was 67.7% and specificity was 67.6%.

CONCLUSIONS AND RELEVANCE This proof-of-concept study found that smartwatch
photoplethysmography coupled with a deep neural network can passively detect AF but with
some loss of sensitivity and specificity against a criterion-standard ECG. Further studies will
help identify the optimal role for smartwatch-guided rhythm assessment.
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limitations of ambulatory blood pressure cuffs, smartphone-
based data collection is limited in requiring active participa-
tion from the participant (dependent on user adherence) and
by the episodic nature of data obtained. A Samsung Simband
(Samsung) exhibited high sensitivity and specificity for AF de-
tection among 46 individuals.32 However, validation in an ex-
ternal cohort was not performed, and these findings are tied
to a single stand-alone device used for research that is not com-
mercially available. To our knowledge, our study represents
the first to use a deep neural network to passively detect AF
using smartwatch data.

When tested against 12-lead ECG–diagnosed AF in our vali-
dation experiment, the deep neural network outperformed 2
conventional methods for the detection of AF.20 Although the
mean heart rate may differ between those in AF and sinus
rhythm, our results were not meaningfully changed after heart
rate data were normalized. This external validation demon-
strates that the neural network can passively detect AF from
smartwatch data with excellent performance characteristics
obtained in sedentary individuals captured at high temporal
resolution (ie, Workout mode). Even within these con-
straints, public health implications for AF screening may be
broad because periods of sleep can provide long, uninter-
rupted periods of sedentary data, and it is technically fea-
sible to enable high temporal resolution data collection at
scheduled periods.

In light of the relative frequency of subclinical AF de-
tected by implanted devices among patients at risk of
stroke,33-35 it is very likely that the widespread use of an ac-
curate algorithm to detect AF among the large population con-

tinuously wearing smartwatches would result in a substan-
tial increase in new AF diagnoses. While there may be increased
costs associated with the care of those patients, the potential
reduction in stroke could ultimately provide cost savings.

Several factors make detection of AF from ambulatory data
an inherently more difficult classification task: (1) the pre-
dominance of ambulatory heart rates are represented by non–
Workout mode data sampled every 5 minutes, which trans-
lates to a significant loss of temporal resolution; (2) the
variability in heart rate in an ambulatory population is signifi-
cantly increased by a wide range of activities; and (3) heart rate
sensor noise is increased with movement. Because the re-
mote cohort data set was limited to using self-reported diag-
noses of persistent AF rather than ECG-diagnosed AF as in our
validation cohort, we considered this analysis exploratory. We
did not know how many participants were actually in AF at the
time the Apple Watch measurements were taken. Acknowl-
edging these limitations, when using conventional algo-
rithms to analyze the ambulatory data (RMSSD and ShE), C sta-
tistics were similar to predictors based on chance alone. In
contrast, even after adjustment for conventional risk factors,
the neural network’s algorithm classified individuals with per-
sistent AF. As technology develops, expected improvements
in sensors and battery life will likely improve the temporal reso-
lution of ambulatory heart rate measurements, enabling en-
hanced algorithm performance for disease detection.

In contrast to methods used in other recent medical ap-
plications of deep neural networks,17,18 we developed a semisu-
pervised heuristic pretraining procedure that is not depen-
dent on manual physician annotation of training data. Here,

Figure 2. Accuracy of Detecting Atrial Fibrillation in the Cardioversion Cohort
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A, Receiver operating characteristic
curve among 51 individuals
undergoing in-hospital cardioversion.
The curve demonstrates a C statistic
of 0.97 (95% CI, 0.94-1.00), and the
point on the curve indicates a
sensitivity of 98.0% and a specificity
of 90.2%. B, Receiver operating
characteristic curve among 1617
individuals in the ambulatory subset
of the remote cohort. The curve
demonstrates a C statistic of 0.72
(95% CI, 0.64-0.78), and the point on
the curve indicates a sensitivity of
67.7% and a specificity of 67.6%.

Table 3. Performance Characteristics of Deep Neural Network in Validation Cohortsa

Cohort

%

AUCSensitivity Specificity PPV NPV
Cardioversion cohort (sedentary) 98.0 90.2 90.9 97.8 0.97

Subset of remote cohort (ambulatory) 67.7 67.6 7.9 98.1 0.72

Abbreviations: AUC, area under the receiver operating characteristic curve;
NPV, negative predictive value; PPV, positive predictive value.
a In the cardioversion cohort, the atrial fibrillation reference standard was

12-lead electrocardiography diagnosis; in the remote cohort, the atrial
fibrillation reference standard was limited to self-reported history of persistent
atrial fibrillation.
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justed odds ratio of 1.98 (95% CI, 1.48-2.65; P = .02) for per-
sistent AF. Table 3 shows the performance characteristics of
the algorithm in both validation cohorts. In the setting of the
low (4%) AF prevalence in the remote cohort, the positive pre-
dictive value was low.

Discussion
We demonstrate that a commercially available smartwatch can
passively detect AF using a readily available mobile application
usingadeepneuralnetwork.Inexternalvalidationusingthestan-
dard 12-lead ECG as the reference, algorithm performance
achieved a C statistic of 0.97. The passive detection of AF from
free-living smartwatch data has substantial clinical implications.
Importantly, the accuracy of detecting self-reported AF in an am-
bulatory setting was more modest (C statistic of 0.72). Although
the deep neural network’s AF classification in the exploratory
analysisexhibitedhigheroddsratiosthanothermeasuredAFrisk
factors, this proof-of-concept experiment likely demonstrates
the challenges of accurately detecting ambulatory arrhythmia
among constantly mobile individuals in natural environments.

Atrial fibrillation is the leading cause of stroke, and its de-
tection is difficult because of its often asymptomatic nature
and paroxysmal frequency.1,4,10,11,14 Readily accessible means
to detect and screen for silent AF are needed. Even though
monitors with automated capabilities, such as implantable loop
recorders, can be used to detect AF, they are invasive, expen-
sive, and inconvenient.26,27 The ideal instrument for AF de-
tection would be noninvasive and provide real-time, accu-
rate AF detection in a passive fashion—specifically, not
requiring the user to remember to perform some action and
not limited to any one snapshot in time. Smartwatches are well
positioned to accomplish these goals in a cost-efficient and re-
source-efficient fashion. Wearable technology has shown a
steady increase in global usage,28 and the smartwatch, most
popular among all wearable sensors, is projected to reach 55
million global shipments by 2020.29

Prior efforts to automatically detect AF among free-
living participants have predominantly used ambulatory blood
pressure monitors,30 although some recent studies21,31 have
used smartphones and wearable devices. Two studies20,21

showed that AF can be detected using a photoplethysmogra-
phy waveform obtained via the iPhone camera. Similar to the

Figure 1. T-Distributed Stochastic Neighbor Embedding Visualization of the Deep Neural Network’s Last Layer
Using Data From the Cardioversion Cohort
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This t-distributed stochastic neighbor embedding, which is a technique that
assists in visualizing high-dimensional data in 2 dimensions, depicts the deep
neural network’s internal representation of the data derived from the last
recurrent layer of the neural network. Each point represents a 10-minute
segment of data from our validation (cardioversion) data set; orange points
represent atrial fibrillation segments (precardioversion) and blue points
represent normal sinus rhythm segments (postcardioversion). The neural
network has largely clustered atrial fibrillation from normal sinus rhythm

segments, as depicted when plotted on 2 dimensions (axes) that were chosen
arbitrarily. Most points classified as normal sinus rhythm are in the upper part of
the visualization, while atrial fibrillation points are separated in alternate
clusters. The upper inset shows an example of raw smartwatch heart rate data
associated with normal sinus rhythm, and the lower inset shows raw atrial
fibrillation smartwatch data; each vertical bar represents a 5-second average
heart rate color-coded by beats per minute (BPM; blue, <60; orange, 60-99;
red, !100).
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justed odds ratio of 1.98 (95% CI, 1.48-2.65; P = .02) for per-
sistent AF. Table 3 shows the performance characteristics of
the algorithm in both validation cohorts. In the setting of the
low (4%) AF prevalence in the remote cohort, the positive pre-
dictive value was low.

Discussion
We demonstrate that a commercially available smartwatch can
passively detect AF using a readily available mobile application
usingadeepneuralnetwork.Inexternalvalidationusingthestan-
dard 12-lead ECG as the reference, algorithm performance
achieved a C statistic of 0.97. The passive detection of AF from
free-living smartwatch data has substantial clinical implications.
Importantly, the accuracy of detecting self-reported AF in an am-
bulatory setting was more modest (C statistic of 0.72). Although
the deep neural network’s AF classification in the exploratory
analysisexhibitedhigheroddsratiosthanothermeasuredAFrisk
factors, this proof-of-concept experiment likely demonstrates
the challenges of accurately detecting ambulatory arrhythmia
among constantly mobile individuals in natural environments.

Atrial fibrillation is the leading cause of stroke, and its de-
tection is difficult because of its often asymptomatic nature
and paroxysmal frequency.1,4,10,11,14 Readily accessible means
to detect and screen for silent AF are needed. Even though
monitors with automated capabilities, such as implantable loop
recorders, can be used to detect AF, they are invasive, expen-
sive, and inconvenient.26,27 The ideal instrument for AF de-
tection would be noninvasive and provide real-time, accu-
rate AF detection in a passive fashion—specifically, not
requiring the user to remember to perform some action and
not limited to any one snapshot in time. Smartwatches are well
positioned to accomplish these goals in a cost-efficient and re-
source-efficient fashion. Wearable technology has shown a
steady increase in global usage,28 and the smartwatch, most
popular among all wearable sensors, is projected to reach 55
million global shipments by 2020.29

Prior efforts to automatically detect AF among free-
living participants have predominantly used ambulatory blood
pressure monitors,30 although some recent studies21,31 have
used smartphones and wearable devices. Two studies20,21

showed that AF can be detected using a photoplethysmogra-
phy waveform obtained via the iPhone camera. Similar to the
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assists in visualizing high-dimensional data in 2 dimensions, depicts the deep
neural network’s internal representation of the data derived from the last
recurrent layer of the neural network. Each point represents a 10-minute
segment of data from our validation (cardioversion) data set; orange points
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represent normal sinus rhythm segments (postcardioversion). The neural
network has largely clustered atrial fibrillation from normal sinus rhythm

segments, as depicted when plotted on 2 dimensions (axes) that were chosen
arbitrarily. Most points classified as normal sinus rhythm are in the upper part of
the visualization, while atrial fibrillation points are separated in alternate
clusters. The upper inset shows an example of raw smartwatch heart rate data
associated with normal sinus rhythm, and the lower inset shows raw atrial
fibrillation smartwatch data; each vertical bar represents a 5-second average
heart rate color-coded by beats per minute (BPM; blue, <60; orange, 60-99;
red, !100).
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IMPORTANCE Atrial fibrillation (AF) affects 34 million people worldwide and is a leading cause
of stroke. A readily accessible means to continuously monitor for AF could prevent large
numbers of strokes and death.

OBJECTIVE To develop and validate a deep neural network to detect AF using smartwatch
data.
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coordinated at the University of California, San Francisco, smartwatches were used to obtain
heart rate and step count data for algorithm development. A total of 9750 participants
enrolled in the Health eHeart Study and 51 patients undergoing cardioversion at the
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A deep neural network was trained using a method called heuristic pretraining in which the
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standard 12-lead electrocardiography (ECG) in a separate cohort of patients undergoing
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ambulatory individuals against the reference standard of self-reported history of persistent
AF. Data were analyzed from March 2017 to September 2017.

MAIN OUTCOMES AND MEASURES The sensitivity, specificity, and receiver operating
characteristic C statistic for the algorithm to detect AF were generated based on the
reference standard of 12-lead ECG–diagnosed AF.

RESULTS Of the 9750 participants enrolled in the remote cohort, including 347 participants
with AF, 6143 (63.0%) were male, and the mean (SD) age was 42 (12) years. There were more
than 139 million heart rate measurements on which the deep neural network was trained. The
deep neural network exhibited a C statistic of 0.97 (95% CI, 0.94-1.00; P < .001) to detect
AF against the reference standard 12-lead ECG–diagnosed AF in the external validation cohort
of 51 patients undergoing cardioversion; sensitivity was 98.0% and specificity was 90.2%.
In an exploratory analysis relying on self-report of persistent AF in ambulatory participants,
the C statistic was 0.72 (95% CI, 0.64-0.78); sensitivity was 67.7% and specificity was 67.6%.

CONCLUSIONS AND RELEVANCE This proof-of-concept study found that smartwatch
photoplethysmography coupled with a deep neural network can passively detect AF but with
some loss of sensitivity and specificity against a criterion-standard ECG. Further studies will
help identify the optimal role for smartwatch-guided rhythm assessment.
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limitations of ambulatory blood pressure cuffs, smartphone-
based data collection is limited in requiring active participa-
tion from the participant (dependent on user adherence) and
by the episodic nature of data obtained. A Samsung Simband
(Samsung) exhibited high sensitivity and specificity for AF de-
tection among 46 individuals.32 However, validation in an ex-
ternal cohort was not performed, and these findings are tied
to a single stand-alone device used for research that is not com-
mercially available. To our knowledge, our study represents
the first to use a deep neural network to passively detect AF
using smartwatch data.

When tested against 12-lead ECG–diagnosed AF in our vali-
dation experiment, the deep neural network outperformed 2
conventional methods for the detection of AF.20 Although the
mean heart rate may differ between those in AF and sinus
rhythm, our results were not meaningfully changed after heart
rate data were normalized. This external validation demon-
strates that the neural network can passively detect AF from
smartwatch data with excellent performance characteristics
obtained in sedentary individuals captured at high temporal
resolution (ie, Workout mode). Even within these con-
straints, public health implications for AF screening may be
broad because periods of sleep can provide long, uninter-
rupted periods of sedentary data, and it is technically fea-
sible to enable high temporal resolution data collection at
scheduled periods.

In light of the relative frequency of subclinical AF de-
tected by implanted devices among patients at risk of
stroke,33-35 it is very likely that the widespread use of an ac-
curate algorithm to detect AF among the large population con-

tinuously wearing smartwatches would result in a substan-
tial increase in new AF diagnoses. While there may be increased
costs associated with the care of those patients, the potential
reduction in stroke could ultimately provide cost savings.

Several factors make detection of AF from ambulatory data
an inherently more difficult classification task: (1) the pre-
dominance of ambulatory heart rates are represented by non–
Workout mode data sampled every 5 minutes, which trans-
lates to a significant loss of temporal resolution; (2) the
variability in heart rate in an ambulatory population is signifi-
cantly increased by a wide range of activities; and (3) heart rate
sensor noise is increased with movement. Because the re-
mote cohort data set was limited to using self-reported diag-
noses of persistent AF rather than ECG-diagnosed AF as in our
validation cohort, we considered this analysis exploratory. We
did not know how many participants were actually in AF at the
time the Apple Watch measurements were taken. Acknowl-
edging these limitations, when using conventional algo-
rithms to analyze the ambulatory data (RMSSD and ShE), C sta-
tistics were similar to predictors based on chance alone. In
contrast, even after adjustment for conventional risk factors,
the neural network’s algorithm classified individuals with per-
sistent AF. As technology develops, expected improvements
in sensors and battery life will likely improve the temporal reso-
lution of ambulatory heart rate measurements, enabling en-
hanced algorithm performance for disease detection.

In contrast to methods used in other recent medical ap-
plications of deep neural networks,17,18 we developed a semisu-
pervised heuristic pretraining procedure that is not depen-
dent on manual physician annotation of training data. Here,

Figure 2. Accuracy of Detecting Atrial Fibrillation in the Cardioversion Cohort
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A, Receiver operating characteristic
curve among 51 individuals
undergoing in-hospital cardioversion.
The curve demonstrates a C statistic
of 0.97 (95% CI, 0.94-1.00), and the
point on the curve indicates a
sensitivity of 98.0% and a specificity
of 90.2%. B, Receiver operating
characteristic curve among 1617
individuals in the ambulatory subset
of the remote cohort. The curve
demonstrates a C statistic of 0.72
(95% CI, 0.64-0.78), and the point on
the curve indicates a sensitivity of
67.7% and a specificity of 67.6%.

Table 3. Performance Characteristics of Deep Neural Network in Validation Cohortsa

Cohort

%

AUCSensitivity Specificity PPV NPV
Cardioversion cohort (sedentary) 98.0 90.2 90.9 97.8 0.97

Subset of remote cohort (ambulatory) 67.7 67.6 7.9 98.1 0.72

Abbreviations: AUC, area under the receiver operating characteristic curve;
NPV, negative predictive value; PPV, positive predictive value.
a In the cardioversion cohort, the atrial fibrillation reference standard was

12-lead electrocardiography diagnosis; in the remote cohort, the atrial
fibrillation reference standard was limited to self-reported history of persistent
atrial fibrillation.
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justed odds ratio of 1.98 (95% CI, 1.48-2.65; P = .02) for per-
sistent AF. Table 3 shows the performance characteristics of
the algorithm in both validation cohorts. In the setting of the
low (4%) AF prevalence in the remote cohort, the positive pre-
dictive value was low.

Discussion
We demonstrate that a commercially available smartwatch can
passively detect AF using a readily available mobile application
usingadeepneuralnetwork.Inexternalvalidationusingthestan-
dard 12-lead ECG as the reference, algorithm performance
achieved a C statistic of 0.97. The passive detection of AF from
free-living smartwatch data has substantial clinical implications.
Importantly, the accuracy of detecting self-reported AF in an am-
bulatory setting was more modest (C statistic of 0.72). Although
the deep neural network’s AF classification in the exploratory
analysisexhibitedhigheroddsratiosthanothermeasuredAFrisk
factors, this proof-of-concept experiment likely demonstrates
the challenges of accurately detecting ambulatory arrhythmia
among constantly mobile individuals in natural environments.

Atrial fibrillation is the leading cause of stroke, and its de-
tection is difficult because of its often asymptomatic nature
and paroxysmal frequency.1,4,10,11,14 Readily accessible means
to detect and screen for silent AF are needed. Even though
monitors with automated capabilities, such as implantable loop
recorders, can be used to detect AF, they are invasive, expen-
sive, and inconvenient.26,27 The ideal instrument for AF de-
tection would be noninvasive and provide real-time, accu-
rate AF detection in a passive fashion—specifically, not
requiring the user to remember to perform some action and
not limited to any one snapshot in time. Smartwatches are well
positioned to accomplish these goals in a cost-efficient and re-
source-efficient fashion. Wearable technology has shown a
steady increase in global usage,28 and the smartwatch, most
popular among all wearable sensors, is projected to reach 55
million global shipments by 2020.29

Prior efforts to automatically detect AF among free-
living participants have predominantly used ambulatory blood
pressure monitors,30 although some recent studies21,31 have
used smartphones and wearable devices. Two studies20,21

showed that AF can be detected using a photoplethysmogra-
phy waveform obtained via the iPhone camera. Similar to the

Figure 1. T-Distributed Stochastic Neighbor Embedding Visualization of the Deep Neural Network’s Last Layer
Using Data From the Cardioversion Cohort
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This t-distributed stochastic neighbor embedding, which is a technique that
assists in visualizing high-dimensional data in 2 dimensions, depicts the deep
neural network’s internal representation of the data derived from the last
recurrent layer of the neural network. Each point represents a 10-minute
segment of data from our validation (cardioversion) data set; orange points
represent atrial fibrillation segments (precardioversion) and blue points
represent normal sinus rhythm segments (postcardioversion). The neural
network has largely clustered atrial fibrillation from normal sinus rhythm

segments, as depicted when plotted on 2 dimensions (axes) that were chosen
arbitrarily. Most points classified as normal sinus rhythm are in the upper part of
the visualization, while atrial fibrillation points are separated in alternate
clusters. The upper inset shows an example of raw smartwatch heart rate data
associated with normal sinus rhythm, and the lower inset shows raw atrial
fibrillation smartwatch data; each vertical bar represents a 5-second average
heart rate color-coded by beats per minute (BPM; blue, <60; orange, 60-99;
red, !100).

Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch Original Investigation Research

jamacardiology.com (Reprinted) JAMA Cardiology May 2018 Volume 3, Number 5 413

© 2018 American Medical Association. All rights reserved.

Downloaded From:  by a Stanford University Medical Center User  on 07/19/2018

justed odds ratio of 1.98 (95% CI, 1.48-2.65; P = .02) for per-
sistent AF. Table 3 shows the performance characteristics of
the algorithm in both validation cohorts. In the setting of the
low (4%) AF prevalence in the remote cohort, the positive pre-
dictive value was low.

Discussion
We demonstrate that a commercially available smartwatch can
passively detect AF using a readily available mobile application
usingadeepneuralnetwork.Inexternalvalidationusingthestan-
dard 12-lead ECG as the reference, algorithm performance
achieved a C statistic of 0.97. The passive detection of AF from
free-living smartwatch data has substantial clinical implications.
Importantly, the accuracy of detecting self-reported AF in an am-
bulatory setting was more modest (C statistic of 0.72). Although
the deep neural network’s AF classification in the exploratory
analysisexhibitedhigheroddsratiosthanothermeasuredAFrisk
factors, this proof-of-concept experiment likely demonstrates
the challenges of accurately detecting ambulatory arrhythmia
among constantly mobile individuals in natural environments.

Atrial fibrillation is the leading cause of stroke, and its de-
tection is difficult because of its often asymptomatic nature
and paroxysmal frequency.1,4,10,11,14 Readily accessible means
to detect and screen for silent AF are needed. Even though
monitors with automated capabilities, such as implantable loop
recorders, can be used to detect AF, they are invasive, expen-
sive, and inconvenient.26,27 The ideal instrument for AF de-
tection would be noninvasive and provide real-time, accu-
rate AF detection in a passive fashion—specifically, not
requiring the user to remember to perform some action and
not limited to any one snapshot in time. Smartwatches are well
positioned to accomplish these goals in a cost-efficient and re-
source-efficient fashion. Wearable technology has shown a
steady increase in global usage,28 and the smartwatch, most
popular among all wearable sensors, is projected to reach 55
million global shipments by 2020.29

Prior efforts to automatically detect AF among free-
living participants have predominantly used ambulatory blood
pressure monitors,30 although some recent studies21,31 have
used smartphones and wearable devices. Two studies20,21

showed that AF can be detected using a photoplethysmogra-
phy waveform obtained via the iPhone camera. Similar to the

Figure 1. T-Distributed Stochastic Neighbor Embedding Visualization of the Deep Neural Network’s Last Layer
Using Data From the Cardioversion Cohort
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This t-distributed stochastic neighbor embedding, which is a technique that
assists in visualizing high-dimensional data in 2 dimensions, depicts the deep
neural network’s internal representation of the data derived from the last
recurrent layer of the neural network. Each point represents a 10-minute
segment of data from our validation (cardioversion) data set; orange points
represent atrial fibrillation segments (precardioversion) and blue points
represent normal sinus rhythm segments (postcardioversion). The neural
network has largely clustered atrial fibrillation from normal sinus rhythm

segments, as depicted when plotted on 2 dimensions (axes) that were chosen
arbitrarily. Most points classified as normal sinus rhythm are in the upper part of
the visualization, while atrial fibrillation points are separated in alternate
clusters. The upper inset shows an example of raw smartwatch heart rate data
associated with normal sinus rhythm, and the lower inset shows raw atrial
fibrillation smartwatch data; each vertical bar represents a 5-second average
heart rate color-coded by beats per minute (BPM; blue, <60; orange, 60-99;
red, !100).
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Tachogram = Periodic spot measurements
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Consort Diagram

Total Population 
419,297

No Notification (PN) 
417,136 (99.5%)

Completed EOS Survey 
293,015 (70%)

Pulse Notification 
2,161 (0.5%)

First Study Visit 
945 (44%)

ECG Patch Shipped 
658 (70%)

ECG Patch Returned & Analyzed 
450 (68%)

Completed 90-day Survey 
1,376 / 2,161 (64%)

Completed EOS Survey 
929 / 2,161 (43%)

ECG Patch EOS Survey 
90-Day SurveyOverall Cohort Notification

At SV1: 291 (31%) 
• Emergent symptoms: 20 
• Prior Afib of flutter: 174 
• Current Anticoagulant use: 90 
• Other reasons: 33



Initial Irregular Pulse Notifications
Grouping Notified / Total % 

Overall 2,161 / 419,297 0.52

Age

≥ 65 775 / 24,626 3.2
55–64 556 / 42,633 1.3
40–54 488 / 132,696 0.37
22–39 341 / 219,179 0.16

Sex
Female 461 / 177,087 0.26
Male 1,672 / 238,700 0.70

Proportion Notified (%)

~ 8 Months Monitoring

Overall Cohort



          Afib Yield on ECG Patch
Grouping Observed AF / Total %

Overall 153 / 450 34.0

Age

≥ 65 63 / 181 34.8
55–64 47 / 114 41.2
40–54 34 / 106 32.1
22–39 9 / 49 18.4

Sex
Female 26 / 102 25.5
Male 124 / 335 37.0

ECG Patch (450/2,161)

Mean time to hookup: 13 days 
Mean wear time:  6.3 days

34.8 (97.5% CI 27 – 43)



Afib Burden and Duration 

Burden Duration of Longest Episode

24 hr 25.5%

6 hr 34.0%

1 hr 29.4%

6 min 5.9%

30 sec 5.2%

ECG Patch 
153/450 With AF

89%



Positive Predictive Values

Afib on  

ECG Patch
Total Positive 
Tachograms PPV* (97.5% CI)

1,489 2,089 0.71 (0.69–0.74)

Irregular Tachograms

Afib on  

ECG Patch
Total Positive 
Notifications PPV (95% CI)

72 86 0.84 (0.76–0.92)

Irregular Pulse Notifications
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[1] Qualifying hardware and software criteria are checked directly. Participants are routed to the app on their phone 
to complete study enrollment.
[2] The home page displays the number of days the participant has been in the study.
[3] Participants receive notifications on their watch directing them to the Apple Heart Study app on their phone when 
an irregular heart rhythm is observed.
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Computerized electrocardiogram (ECG) interpretation plays 
a critical role in the clinical ECG workflow1. Widely available 
digital ECG data and the algorithmic paradigm of deep learn-
ing2 present an opportunity to substantially improve the accu-
racy and scalability of automated ECG analysis. However, a 
comprehensive evaluation of an end-to-end deep learning 
approach for ECG analysis across a wide variety of diagnostic 
classes has not been previously reported. Here, we develop 
a deep neural network (DNN) to classify 12 rhythm classes 
using 91,232 single-lead ECGs from 53,549 patients who 
used a single-lead ambulatory ECG monitoring device. When 
validated against an independent test dataset annotated by 
a consensus committee of board-certified practicing cardiolo-
gists, the DNN achieved an average area under the receiver 
operating characteristic curve (ROC) of 0.97. The average F1 
score, which is the harmonic mean of the positive predictive 
value and sensitivity, for the DNN (0.837) exceeded that of 
average cardiologists (0.780). With specificity fixed at the 
average specificity achieved by cardiologists, the sensitivity 
of the DNN exceeded the average cardiologist sensitivity for 
all rhythm classes. These findings demonstrate that an end-
to-end deep learning approach can classify a broad range of 
distinct arrhythmias from single-lead ECGs with high diagnos-
tic performance similar to that of cardiologists. If confirmed in 
clinical settings, this approach could reduce the rate of misdi-
agnosed computerized ECG interpretations and improve the 
efficiency of expert human ECG interpretation by accurately 
triaging or prioritizing the most urgent conditions.

The electrocardiogram is a fundamental tool in the everyday 
practice of clinical medicine, with more than 300 million ECGs 
obtained annually worldwide3. The ECG is pivotal for diagnos-
ing a wide spectrum of abnormalities from arrhythmias to acute 
coronary syndrome4. Computer-aided interpretation has become 
increasingly important in the clinical ECG workflow since its intro-
duction over 50 years ago, serving as a crucial adjunct to physician 
interpretation in many clinical settings1. However, existing com-
mercial ECG interpretation algorithms still show substantial rates 
of misdiagnosis1,5–7. The combination of widespread digitization of 
ECG data and the development of algorithmic paradigms that can 
benefit from large-scale processing of raw data presents an opportu-
nity to reexamine the standard approach to algorithmic ECG analy-
sis and may provide substantial improvements to automated ECG 
interpretation.

Substantial algorithmic advances in the past five years have been 
driven largely by a specific class of models known as deep neural 

networks2. DNNs are computational models consisting of multiple 
processing layers, with each layer being able to learn increasingly 
abstract, higher-level representations of the input data relevant to 
perform specific tasks. They have dramatically improved the state 
of the art in speech recognition8, image recognition9, strategy games 
such as Go10, and in medical applications11,12. The ability of DNNs 
to recognize patterns and learn useful features from raw input data 
without requiring extensive data preprocessing, feature engineer-
ing or handcrafted rules2 makes them particularly well suited to 
interpret ECG data. Furthermore, since DNN performance tends 
to increase as the amount of training data increases2, this approach 
is well positioned to take advantage of the widespread digitization 
of ECG data.

A comprehensive evaluation of whether an end-to-end deep 
learning approach can be used to analyze raw ECG data to classify 
a broad range of diagnoses remains lacking. Much of the previous 
work to employ DNNs toward ECG interpretation has focused on 
single aspects of the ECG processing pipeline, such as noise reduc-
tion13,14 or feature extraction15,16, or has approached limited diag-
nostic tasks, detecting only a handful of heartbeat types (normal, 
ventricular or supraventricular ectopic, fusion, and so on)17–20 or 
rhythm diagnoses (most commonly atrial fibrillation or ventric-
ular tachycardia)21–25. Lack of appropriate data has limited many 
efforts beyond these applications. Most prior efforts used data 
from the MIT-BIH Arrhythmia database (PhysioNet)26, which 
is limited by the small number of patients and rhythm episodes  
present in the dataset.

In this study, we constructed a large, novel ECG dataset that 
underwent expert annotation for a broad range of ECG rhythm 
classes. We developed a DNN to detect 12 rhythm classes from 
raw single-lead ECG inputs using a training dataset consisting of 
91,232 ECG records from 53,549 patients. The DNN was designed 
to classify 10 arrhythmias as well as sinus rhythm and noise for 
a total of 12 output rhythm classes (Extended Data Fig. 1). ECG 
data were recorded by the Zio monitor, which is a Food and Drug 
Administration (FDA)-cleared, single-lead, patch-based ambula-
tory ECG monitor27 that continuously records data from a single 
vector (modified Lead II) at 200 Hz. The mean and median wear 
time of the Zio monitor in our dataset was 10.6 and 13.0 days, 
respectively. Mean age was 69 ±  16 years and 43% were women. 
We validated the DNN on a test dataset that consisted of 328 ECG 
records collected from 328 unique patients, which was annotated by 
a consensus committee of expert cardiologists (see Methods). Mean 
age on the test dataset was 70 ±  17 years and 38% were women. The 
mean inter-annotator agreement on the test dataset was 72.8%. 
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Computerized electrocardiogram (ECG) interpretation plays 
a critical role in the clinical ECG workflow1. Widely available 
digital ECG data and the algorithmic paradigm of deep learn-
ing2 present an opportunity to substantially improve the accu-
racy and scalability of automated ECG analysis. However, a 
comprehensive evaluation of an end-to-end deep learning 
approach for ECG analysis across a wide variety of diagnostic 
classes has not been previously reported. Here, we develop 
a deep neural network (DNN) to classify 12 rhythm classes 
using 91,232 single-lead ECGs from 53,549 patients who 
used a single-lead ambulatory ECG monitoring device. When 
validated against an independent test dataset annotated by 
a consensus committee of board-certified practicing cardiolo-
gists, the DNN achieved an average area under the receiver 
operating characteristic curve (ROC) of 0.97. The average F1 
score, which is the harmonic mean of the positive predictive 
value and sensitivity, for the DNN (0.837) exceeded that of 
average cardiologists (0.780). With specificity fixed at the 
average specificity achieved by cardiologists, the sensitivity 
of the DNN exceeded the average cardiologist sensitivity for 
all rhythm classes. These findings demonstrate that an end-
to-end deep learning approach can classify a broad range of 
distinct arrhythmias from single-lead ECGs with high diagnos-
tic performance similar to that of cardiologists. If confirmed in 
clinical settings, this approach could reduce the rate of misdi-
agnosed computerized ECG interpretations and improve the 
efficiency of expert human ECG interpretation by accurately 
triaging or prioritizing the most urgent conditions.

The electrocardiogram is a fundamental tool in the everyday 
practice of clinical medicine, with more than 300 million ECGs 
obtained annually worldwide3. The ECG is pivotal for diagnos-
ing a wide spectrum of abnormalities from arrhythmias to acute 
coronary syndrome4. Computer-aided interpretation has become 
increasingly important in the clinical ECG workflow since its intro-
duction over 50 years ago, serving as a crucial adjunct to physician 
interpretation in many clinical settings1. However, existing com-
mercial ECG interpretation algorithms still show substantial rates 
of misdiagnosis1,5–7. The combination of widespread digitization of 
ECG data and the development of algorithmic paradigms that can 
benefit from large-scale processing of raw data presents an opportu-
nity to reexamine the standard approach to algorithmic ECG analy-
sis and may provide substantial improvements to automated ECG 
interpretation.

Substantial algorithmic advances in the past five years have been 
driven largely by a specific class of models known as deep neural 

networks2. DNNs are computational models consisting of multiple 
processing layers, with each layer being able to learn increasingly 
abstract, higher-level representations of the input data relevant to 
perform specific tasks. They have dramatically improved the state 
of the art in speech recognition8, image recognition9, strategy games 
such as Go10, and in medical applications11,12. The ability of DNNs 
to recognize patterns and learn useful features from raw input data 
without requiring extensive data preprocessing, feature engineer-
ing or handcrafted rules2 makes them particularly well suited to 
interpret ECG data. Furthermore, since DNN performance tends 
to increase as the amount of training data increases2, this approach 
is well positioned to take advantage of the widespread digitization 
of ECG data.

A comprehensive evaluation of whether an end-to-end deep 
learning approach can be used to analyze raw ECG data to classify 
a broad range of diagnoses remains lacking. Much of the previous 
work to employ DNNs toward ECG interpretation has focused on 
single aspects of the ECG processing pipeline, such as noise reduc-
tion13,14 or feature extraction15,16, or has approached limited diag-
nostic tasks, detecting only a handful of heartbeat types (normal, 
ventricular or supraventricular ectopic, fusion, and so on)17–20 or 
rhythm diagnoses (most commonly atrial fibrillation or ventric-
ular tachycardia)21–25. Lack of appropriate data has limited many 
efforts beyond these applications. Most prior efforts used data 
from the MIT-BIH Arrhythmia database (PhysioNet)26, which 
is limited by the small number of patients and rhythm episodes  
present in the dataset.

In this study, we constructed a large, novel ECG dataset that 
underwent expert annotation for a broad range of ECG rhythm 
classes. We developed a DNN to detect 12 rhythm classes from 
raw single-lead ECG inputs using a training dataset consisting of 
91,232 ECG records from 53,549 patients. The DNN was designed 
to classify 10 arrhythmias as well as sinus rhythm and noise for 
a total of 12 output rhythm classes (Extended Data Fig. 1). ECG 
data were recorded by the Zio monitor, which is a Food and Drug 
Administration (FDA)-cleared, single-lead, patch-based ambula-
tory ECG monitor27 that continuously records data from a single 
vector (modified Lead II) at 200 Hz. The mean and median wear 
time of the Zio monitor in our dataset was 10.6 and 13.0 days, 
respectively. Mean age was 69 ±  16 years and 43% were women. 
We validated the DNN on a test dataset that consisted of 328 ECG 
records collected from 328 unique patients, which was annotated by 
a consensus committee of expert cardiologists (see Methods). Mean 
age on the test dataset was 70 ±  17 years and 38% were women. The 
mean inter-annotator agreement on the test dataset was 72.8%. 

Cardiologist-level arrhythmia detection and 
classification in ambulatory electrocardiograms 
using a deep neural network
Awni Y. Hannun" "1,6*, Pranav Rajpurkar" "1,6, Masoumeh Haghpanahi2,6, Geoffrey H. Tison" "3,6, 
Codie Bourn2, Mintu P. Turakhia4,5 and Andrew Y. Ng1

FOCUS | LETTERS
https://doi.org/10.1038/s41591-018-0268-3

NATURE MEDICINE | VOL 25 | JANUARY 2019 | 65–69 | www.nature.com/naturemedicine

Corrected: Publisher Correction

65

Hannun AY, et al. Nature Medicine, 2019

LETTERS | FOCUS NATURE MEDICINE

probabilities. With sufficient training data, using a DNN in this man-
ner has the potential to learn all of the important previously manually 
derived features, along with as-yet-unrecognized features, in a data-
driven way2, and may learn shared features useful in predicting multi-
ple classes. These properties of DNNs can serve to improve prediction 
performance, particularly since there is ample evidence to suggest that 
the currently recognized, manually derived ECG features represent 
only a fraction of the informative features for any diagnosis33,34.

While artificial neural networks were first applied toward the 
interpretation of ECGs as early as two decades ago3,35, until recently 
they only contained several layers and were constrained by algo-
rithmic and computational limitations. More recent studies have 
employed deeper networks, although some only use DNNs to per-
form certain steps in the ECG processing pipeline, such as feature 
extraction33 or classification25. End-to-end DNN approaches have 
been used more recently showing good performance for a limited set 
of ECG rhythms, such as atrial fibrillation22,23,36, ventricular arrhyth-
mias21, or individual heartbeat classes20,21,37,38. While these prior 
efforts demonstrated promising performance for specific rhythms, 
they do not provide a comprehensive evaluation of whether an end-
to-end approach can perform well across a wide range of rhythm 
classes, in a manner similar to that encountered clinically. Our 
approach is unique in using a 34-layer network in an end-to-end 
manner to simultaneously output probabilities for a wide range of 
distinct rhythm diagnoses, all of which is enabled by our dataset, 
which is orders of magnitude larger than most other datasets of 
its kind26. Distinct from some other recent DNN approaches39, no 
substantial preprocessing of ECG data, such as Fourier or wavelet 
transforms40, is needed to achieve strong classification performance.

Since arrhythmia detection is one of the most problematic tasks 
for existing ECG algorithms1,5,6, if validated in clinical settings 
through clinical trials, our approach has the potential for substantial 
clinical impact. Paired with properly annotated digital ECG data, our 
approach has the potential to increase the overall accuracy of prelim-
inary computerized ECG interpretations and can also be used to cus-
tomize predictions to institution- or population-specific applications 
by additional training on institution-specific data. While expert pro-
vider confirmation will probably be appropriate in many clinical set-
tings, the DNN could expand the capability of an expert over-reader 
in the clinical workflow, for example, by triaging urgent conditions 
or those for which the DNN has the least ‘confidence’. Since ECG data 

collected from different clinical applications range in duration from 
10 s (standard 12-lead ECGs) to multiple days (single-lead ambula-
tory ECGs), the application of any algorithm, including ours, must 
ultimately be tailored to the target clinical application. For example, 
even at the performance characteristics we report, applying our algo-
rithm sequentially across an ECG record of long duration would 
result in nontrivial false-positive diagnoses. Faced with a similar 
problem, cardiologists probably incorporate additional mechanisms 
to improve their diagnostic performance, such as taking advantage of 
the increased context or knowledge about arrhythmia epidemiology. 
Similarly, additional algorithmic steps or post-processing heuristics 
may be important before clinical application.

An important finding from our study is that the DNN appears to 
recapitulate the misclassifications made by individual cardiologists, 
as demonstrated by the similarity in the confusion matrices for the 
model and cardiologists. Manual review of the discordances revealed 
that the DNN misclassifications overall appear very reasonable. In 
many cases, the lack of context, limited signal duration, or having a 
single lead limited the conclusions that could reasonably be drawn 
from the data, making it difficult to definitively ascertain whether the 
committee and/or the algorithm was correct. Similar factors, as well 
as human error, may explain the inter-annotator agreement of 72.8%.

Of the rhythm classes we examined, ventricular tachycardia is a 
clinically important rhythm for which the model had a lower F1 score 
than cardiologists, but interestingly had higher sensitivity (94.1%) 
than the averaged cardiologist (78.4%). Manual review of the 16 
records misclassified by the DNN as ventricular tachycardia showed 
that ‘mistakes’ made by the algorithm were very reasonable. For 
example, ventricular tachycardia and idioventricular rhythm (IVR) 
differ only in the heart rate being above or below 100 beats per min-
ute (b.p.m.), respectively. In 7 of the committee-labeled IVR cases, the 
record contained periods of heart rate ≥  100 b.p.m., making ventricu-
lar tachycardia a reasonable classification by the DNN; the remaining 
3 committee-labeled IVR records had rates close to 100 b.p.m.. Of the 
5 cases where the committee label was atrial fibrillation (4) or SVT (1), 
all but one displayed aberrant conduction, resulting in wide QRS com-
plexes (the ECG waveform corresponding to ventricular activation) 
with a similar appearance to ventricular tachycardia. If we recategorize 
the 7 IVR records with a rate ≥  100 b.p.m. as ventricular tachycardia, 
overall DNN performance on ventricular tachycardia exceeds that of 
cardiologists by F1 score, with a set-level F1 score of 0.82 (versus 0.77).
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Fig. 2 | Confusion matrices. a, Confusion matrix for the predictions of the DNN versus the cardiology committee consensus. b, Confusion matrix for predictions of 
individual cardiologists versus the cardiology committee consensus. The percentage of all possible records in each category is displayed on a color gradient scale. 
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Computerized electrocardiogram (ECG) interpretation plays 
a critical role in the clinical ECG workflow1. Widely available 
digital ECG data and the algorithmic paradigm of deep learn-
ing2 present an opportunity to substantially improve the accu-
racy and scalability of automated ECG analysis. However, a 
comprehensive evaluation of an end-to-end deep learning 
approach for ECG analysis across a wide variety of diagnostic 
classes has not been previously reported. Here, we develop 
a deep neural network (DNN) to classify 12 rhythm classes 
using 91,232 single-lead ECGs from 53,549 patients who 
used a single-lead ambulatory ECG monitoring device. When 
validated against an independent test dataset annotated by 
a consensus committee of board-certified practicing cardiolo-
gists, the DNN achieved an average area under the receiver 
operating characteristic curve (ROC) of 0.97. The average F1 
score, which is the harmonic mean of the positive predictive 
value and sensitivity, for the DNN (0.837) exceeded that of 
average cardiologists (0.780). With specificity fixed at the 
average specificity achieved by cardiologists, the sensitivity 
of the DNN exceeded the average cardiologist sensitivity for 
all rhythm classes. These findings demonstrate that an end-
to-end deep learning approach can classify a broad range of 
distinct arrhythmias from single-lead ECGs with high diagnos-
tic performance similar to that of cardiologists. If confirmed in 
clinical settings, this approach could reduce the rate of misdi-
agnosed computerized ECG interpretations and improve the 
efficiency of expert human ECG interpretation by accurately 
triaging or prioritizing the most urgent conditions.

The electrocardiogram is a fundamental tool in the everyday 
practice of clinical medicine, with more than 300 million ECGs 
obtained annually worldwide3. The ECG is pivotal for diagnos-
ing a wide spectrum of abnormalities from arrhythmias to acute 
coronary syndrome4. Computer-aided interpretation has become 
increasingly important in the clinical ECG workflow since its intro-
duction over 50 years ago, serving as a crucial adjunct to physician 
interpretation in many clinical settings1. However, existing com-
mercial ECG interpretation algorithms still show substantial rates 
of misdiagnosis1,5–7. The combination of widespread digitization of 
ECG data and the development of algorithmic paradigms that can 
benefit from large-scale processing of raw data presents an opportu-
nity to reexamine the standard approach to algorithmic ECG analy-
sis and may provide substantial improvements to automated ECG 
interpretation.

Substantial algorithmic advances in the past five years have been 
driven largely by a specific class of models known as deep neural 

networks2. DNNs are computational models consisting of multiple 
processing layers, with each layer being able to learn increasingly 
abstract, higher-level representations of the input data relevant to 
perform specific tasks. They have dramatically improved the state 
of the art in speech recognition8, image recognition9, strategy games 
such as Go10, and in medical applications11,12. The ability of DNNs 
to recognize patterns and learn useful features from raw input data 
without requiring extensive data preprocessing, feature engineer-
ing or handcrafted rules2 makes them particularly well suited to 
interpret ECG data. Furthermore, since DNN performance tends 
to increase as the amount of training data increases2, this approach 
is well positioned to take advantage of the widespread digitization 
of ECG data.

A comprehensive evaluation of whether an end-to-end deep 
learning approach can be used to analyze raw ECG data to classify 
a broad range of diagnoses remains lacking. Much of the previous 
work to employ DNNs toward ECG interpretation has focused on 
single aspects of the ECG processing pipeline, such as noise reduc-
tion13,14 or feature extraction15,16, or has approached limited diag-
nostic tasks, detecting only a handful of heartbeat types (normal, 
ventricular or supraventricular ectopic, fusion, and so on)17–20 or 
rhythm diagnoses (most commonly atrial fibrillation or ventric-
ular tachycardia)21–25. Lack of appropriate data has limited many 
efforts beyond these applications. Most prior efforts used data 
from the MIT-BIH Arrhythmia database (PhysioNet)26, which 
is limited by the small number of patients and rhythm episodes  
present in the dataset.

In this study, we constructed a large, novel ECG dataset that 
underwent expert annotation for a broad range of ECG rhythm 
classes. We developed a DNN to detect 12 rhythm classes from 
raw single-lead ECG inputs using a training dataset consisting of 
91,232 ECG records from 53,549 patients. The DNN was designed 
to classify 10 arrhythmias as well as sinus rhythm and noise for 
a total of 12 output rhythm classes (Extended Data Fig. 1). ECG 
data were recorded by the Zio monitor, which is a Food and Drug 
Administration (FDA)-cleared, single-lead, patch-based ambula-
tory ECG monitor27 that continuously records data from a single 
vector (modified Lead II) at 200 Hz. The mean and median wear 
time of the Zio monitor in our dataset was 10.6 and 13.0 days, 
respectively. Mean age was 69 ±  16 years and 43% were women. 
We validated the DNN on a test dataset that consisted of 328 ECG 
records collected from 328 unique patients, which was annotated by 
a consensus committee of expert cardiologists (see Methods). Mean 
age on the test dataset was 70 ±  17 years and 38% were women. The 
mean inter-annotator agreement on the test dataset was 72.8%. 
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probabilities. With sufficient training data, using a DNN in this man-
ner has the potential to learn all of the important previously manually 
derived features, along with as-yet-unrecognized features, in a data-
driven way2, and may learn shared features useful in predicting multi-
ple classes. These properties of DNNs can serve to improve prediction 
performance, particularly since there is ample evidence to suggest that 
the currently recognized, manually derived ECG features represent 
only a fraction of the informative features for any diagnosis33,34.

While artificial neural networks were first applied toward the 
interpretation of ECGs as early as two decades ago3,35, until recently 
they only contained several layers and were constrained by algo-
rithmic and computational limitations. More recent studies have 
employed deeper networks, although some only use DNNs to per-
form certain steps in the ECG processing pipeline, such as feature 
extraction33 or classification25. End-to-end DNN approaches have 
been used more recently showing good performance for a limited set 
of ECG rhythms, such as atrial fibrillation22,23,36, ventricular arrhyth-
mias21, or individual heartbeat classes20,21,37,38. While these prior 
efforts demonstrated promising performance for specific rhythms, 
they do not provide a comprehensive evaluation of whether an end-
to-end approach can perform well across a wide range of rhythm 
classes, in a manner similar to that encountered clinically. Our 
approach is unique in using a 34-layer network in an end-to-end 
manner to simultaneously output probabilities for a wide range of 
distinct rhythm diagnoses, all of which is enabled by our dataset, 
which is orders of magnitude larger than most other datasets of 
its kind26. Distinct from some other recent DNN approaches39, no 
substantial preprocessing of ECG data, such as Fourier or wavelet 
transforms40, is needed to achieve strong classification performance.

Since arrhythmia detection is one of the most problematic tasks 
for existing ECG algorithms1,5,6, if validated in clinical settings 
through clinical trials, our approach has the potential for substantial 
clinical impact. Paired with properly annotated digital ECG data, our 
approach has the potential to increase the overall accuracy of prelim-
inary computerized ECG interpretations and can also be used to cus-
tomize predictions to institution- or population-specific applications 
by additional training on institution-specific data. While expert pro-
vider confirmation will probably be appropriate in many clinical set-
tings, the DNN could expand the capability of an expert over-reader 
in the clinical workflow, for example, by triaging urgent conditions 
or those for which the DNN has the least ‘confidence’. Since ECG data 

collected from different clinical applications range in duration from 
10 s (standard 12-lead ECGs) to multiple days (single-lead ambula-
tory ECGs), the application of any algorithm, including ours, must 
ultimately be tailored to the target clinical application. For example, 
even at the performance characteristics we report, applying our algo-
rithm sequentially across an ECG record of long duration would 
result in nontrivial false-positive diagnoses. Faced with a similar 
problem, cardiologists probably incorporate additional mechanisms 
to improve their diagnostic performance, such as taking advantage of 
the increased context or knowledge about arrhythmia epidemiology. 
Similarly, additional algorithmic steps or post-processing heuristics 
may be important before clinical application.

An important finding from our study is that the DNN appears to 
recapitulate the misclassifications made by individual cardiologists, 
as demonstrated by the similarity in the confusion matrices for the 
model and cardiologists. Manual review of the discordances revealed 
that the DNN misclassifications overall appear very reasonable. In 
many cases, the lack of context, limited signal duration, or having a 
single lead limited the conclusions that could reasonably be drawn 
from the data, making it difficult to definitively ascertain whether the 
committee and/or the algorithm was correct. Similar factors, as well 
as human error, may explain the inter-annotator agreement of 72.8%.

Of the rhythm classes we examined, ventricular tachycardia is a 
clinically important rhythm for which the model had a lower F1 score 
than cardiologists, but interestingly had higher sensitivity (94.1%) 
than the averaged cardiologist (78.4%). Manual review of the 16 
records misclassified by the DNN as ventricular tachycardia showed 
that ‘mistakes’ made by the algorithm were very reasonable. For 
example, ventricular tachycardia and idioventricular rhythm (IVR) 
differ only in the heart rate being above or below 100 beats per min-
ute (b.p.m.), respectively. In 7 of the committee-labeled IVR cases, the 
record contained periods of heart rate ≥  100 b.p.m., making ventricu-
lar tachycardia a reasonable classification by the DNN; the remaining 
3 committee-labeled IVR records had rates close to 100 b.p.m.. Of the 
5 cases where the committee label was atrial fibrillation (4) or SVT (1), 
all but one displayed aberrant conduction, resulting in wide QRS com-
plexes (the ECG waveform corresponding to ventricular activation) 
with a similar appearance to ventricular tachycardia. If we recategorize 
the 7 IVR records with a rate ≥  100 b.p.m. as ventricular tachycardia, 
overall DNN performance on ventricular tachycardia exceeds that of 
cardiologists by F1 score, with a set-level F1 score of 0.82 (versus 0.77).
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Fig. 2 | Confusion matrices. a, Confusion matrix for the predictions of the DNN versus the cardiology committee consensus. b, Confusion matrix for predictions of 
individual cardiologists versus the cardiology committee consensus. The percentage of all possible records in each category is displayed on a color gradient scale. 
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probabilities. With sufficient training data, using a DNN in this man-
ner has the potential to learn all of the important previously manually 
derived features, along with as-yet-unrecognized features, in a data-
driven way2, and may learn shared features useful in predicting multi-
ple classes. These properties of DNNs can serve to improve prediction 
performance, particularly since there is ample evidence to suggest that 
the currently recognized, manually derived ECG features represent 
only a fraction of the informative features for any diagnosis33,34.

While artificial neural networks were first applied toward the 
interpretation of ECGs as early as two decades ago3,35, until recently 
they only contained several layers and were constrained by algo-
rithmic and computational limitations. More recent studies have 
employed deeper networks, although some only use DNNs to per-
form certain steps in the ECG processing pipeline, such as feature 
extraction33 or classification25. End-to-end DNN approaches have 
been used more recently showing good performance for a limited set 
of ECG rhythms, such as atrial fibrillation22,23,36, ventricular arrhyth-
mias21, or individual heartbeat classes20,21,37,38. While these prior 
efforts demonstrated promising performance for specific rhythms, 
they do not provide a comprehensive evaluation of whether an end-
to-end approach can perform well across a wide range of rhythm 
classes, in a manner similar to that encountered clinically. Our 
approach is unique in using a 34-layer network in an end-to-end 
manner to simultaneously output probabilities for a wide range of 
distinct rhythm diagnoses, all of which is enabled by our dataset, 
which is orders of magnitude larger than most other datasets of 
its kind26. Distinct from some other recent DNN approaches39, no 
substantial preprocessing of ECG data, such as Fourier or wavelet 
transforms40, is needed to achieve strong classification performance.

Since arrhythmia detection is one of the most problematic tasks 
for existing ECG algorithms1,5,6, if validated in clinical settings 
through clinical trials, our approach has the potential for substantial 
clinical impact. Paired with properly annotated digital ECG data, our 
approach has the potential to increase the overall accuracy of prelim-
inary computerized ECG interpretations and can also be used to cus-
tomize predictions to institution- or population-specific applications 
by additional training on institution-specific data. While expert pro-
vider confirmation will probably be appropriate in many clinical set-
tings, the DNN could expand the capability of an expert over-reader 
in the clinical workflow, for example, by triaging urgent conditions 
or those for which the DNN has the least ‘confidence’. Since ECG data 

collected from different clinical applications range in duration from 
10 s (standard 12-lead ECGs) to multiple days (single-lead ambula-
tory ECGs), the application of any algorithm, including ours, must 
ultimately be tailored to the target clinical application. For example, 
even at the performance characteristics we report, applying our algo-
rithm sequentially across an ECG record of long duration would 
result in nontrivial false-positive diagnoses. Faced with a similar 
problem, cardiologists probably incorporate additional mechanisms 
to improve their diagnostic performance, such as taking advantage of 
the increased context or knowledge about arrhythmia epidemiology. 
Similarly, additional algorithmic steps or post-processing heuristics 
may be important before clinical application.

An important finding from our study is that the DNN appears to 
recapitulate the misclassifications made by individual cardiologists, 
as demonstrated by the similarity in the confusion matrices for the 
model and cardiologists. Manual review of the discordances revealed 
that the DNN misclassifications overall appear very reasonable. In 
many cases, the lack of context, limited signal duration, or having a 
single lead limited the conclusions that could reasonably be drawn 
from the data, making it difficult to definitively ascertain whether the 
committee and/or the algorithm was correct. Similar factors, as well 
as human error, may explain the inter-annotator agreement of 72.8%.

Of the rhythm classes we examined, ventricular tachycardia is a 
clinically important rhythm for which the model had a lower F1 score 
than cardiologists, but interestingly had higher sensitivity (94.1%) 
than the averaged cardiologist (78.4%). Manual review of the 16 
records misclassified by the DNN as ventricular tachycardia showed 
that ‘mistakes’ made by the algorithm were very reasonable. For 
example, ventricular tachycardia and idioventricular rhythm (IVR) 
differ only in the heart rate being above or below 100 beats per min-
ute (b.p.m.), respectively. In 7 of the committee-labeled IVR cases, the 
record contained periods of heart rate ≥  100 b.p.m., making ventricu-
lar tachycardia a reasonable classification by the DNN; the remaining 
3 committee-labeled IVR records had rates close to 100 b.p.m.. Of the 
5 cases where the committee label was atrial fibrillation (4) or SVT (1), 
all but one displayed aberrant conduction, resulting in wide QRS com-
plexes (the ECG waveform corresponding to ventricular activation) 
with a similar appearance to ventricular tachycardia. If we recategorize 
the 7 IVR records with a rate ≥  100 b.p.m. as ventricular tachycardia, 
overall DNN performance on ventricular tachycardia exceeds that of 
cardiologists by F1 score, with a set-level F1 score of 0.82 (versus 0.77).
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Fig. 2 | Confusion matrices. a, Confusion matrix for the predictions of the DNN versus the cardiology committee consensus. b, Confusion matrix for predictions of 
individual cardiologists versus the cardiology committee consensus. The percentage of all possible records in each category is displayed on a color gradient scale. 
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n=64K rhythm strips



AF burden-based prediction of stroke

Han LY, et al. Presented.



! Paroxysmal AF with CHA2DS2VASC of 2-4 
randomized to daily NOAC (usual care) vs 
rhythm-guided OAC using wearables

REACT II trial

NIH trial proposal; PIs Passman, Hanley, Turakhia

! 5000 patients, up to 4 
years of follow-up



Sensor-based model of congestion
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Some things just don’t work

Quanttus, Scanadu



Pew Research, January 2018









The telehealth market (distilled)



! Wearables have moved beyond “wellness” into 
rhythm assessment as a prediagnostic or diagnostic 

! Integration into clinical care is an unknown 

! ECG remains the gold standard 

! New challenges and opportunities with brand new 
uses cases and strategic integration into consumer 
tech

In closing



Ip, J. JAMA. 2019
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Technology



The Prediction



Physicians: The Concerns



Bad Precedents



Burnout

Burnout rates in Medicine are twice as high as in other fields

54% of US physicians reported at least 1 symptom of burnout



Scaring the healthy
Demanding 100% accuracy!



Main Stream and Social Media



Are Patients / Consumers Ready?



• > One-half of individuals who purchase a wearable 
device stop using it (one third of these before 6 
months)

• The gap between recording information and 
changing behavior is substantial



Physicians: The Opportunities



Opportunities

Patient care

Research

Cost / Value

Global and Future 
Opportunities



Patient care

Research

Cost / Value

Global and Future 
Opportunities

Opportunities



Atrial Fibrillation 

• Most common arrhythmia affecting > 5 million people – Chronic condition

• Projected 12 million by 2050

• AF accounts for 15 – 20 % of strokes in US

• Strokes secondary to AF are more detrimental

• 18% of AF triggered strokes present with AF that is newly detected

Benjamin EJ et. al. Circulation. 2018
Miyasaka Y et. al. Circulation. 2006
Marini C. et. Al. Stroke. 2005
Lin HJ et. al. Stroke. 1995



Zungsontiporn N. BMJ 2018 

ECG Check

Body Guardian

Preventice



Smartphone ECG Example

Tarakji el al. Heart Rhythm. 2015 William AD et. al. Heart Rhythm. 2018 Oct;15(10):1561-1565



Smartphone ECG Example

Tarakji el al. Heart Rhythm. 2015 William AD et. al. Heart Rhythm. 2018 Oct;15(10):1561-1565

They work

Patients will adopt them 

Automated algorithms are good but not perfect

For clinical decisions, still need physician over-read





58-year-old man with palpitation diagnosed as anxiety attacks

Diagnose



76-year-old man with hypertension 
and diabetes



62-year-old man overseas



44-year-old man with atrial fibrillation

Manage

Started DOAC











First pacemaker to use smartphone directly 
for remote monitoring of the device



My Care Link Heart App



Opportunities

Patient care

Research

Cost / Value

Global and Future 
Opportunities



Steinhubl et. al. JAMA. 2018 

Incidence of AF diagnosis was 3.9% in the immediate 
monitoring group vs 0.9% in the delayed group

Monitored group led to more use of healthcare resources

• Direct to participant randomized clinical trial 
among members of a healthcare plan 

• 3 groups

• Immediate monitoring (patch x 2)

• Delayed monitoring (after 4 months)

• Observation group



Turakhia MP et. al. Am Heart J. 2019 

One email sent to 

encourage enrollment



94% reduction in the time on NOAC

Rhythm Evaluation for Anticoagulation
Therapy for Atrial Fibrillation (REACT-AF) 

*Courtesy Dr. Rod Passman, Northwestern Medical Center



Opportunities

Patient care

Research

Cost / Value

Global and Future 
Opportunities



• 100 patients presenting for elective 
cardioversion for AF

• ECG pre and post Cardioversion

• Simultaneous Kardia Band Smart Watch 
recording

8% of patients were in sinus rhythm 
and did not need cardioversion



68-year-old woman s/p redo AF ablation
Redo PVI

Follow up



• Telehealth market is expected to rapidly rise to 12.13B by 2022

• The Medical Virtualist

• Change in medical school curriculum

• Bedside manner vs Webside manner?

• Telemedicine ≠ Video Chat but could be of great value when supported by 
additional tools (All monitors could be order remotely)



Opportunities

Patient care

Research

Cost / Value

Global and Future 
Opportunities



Smart Devices: Not limited to the rich





1. Digital Health In EP

2. Digital Health Tools For Arrhythmia Identification

3. The Wearables & Apps: Show Me the Data

Register today! HRSsessions.org

DIGITAL HEALTH SUMMIT:
EP HITS CENTER STAGE – READY OR NOT!

4. Venture Capitalist & Entrepreneur Roundtable

5. AI in EP: Computational Approaches; AI in Hospitals 

6. The Role of Tech Giants in Healthcare

7. Success Stories: Driving Digital Health Pathways

8. Digital Health Live Virtual Visit

>>>> 8 Sessions on Wednesday, May 8th <<<<

*In partnership w/ European Heart Rhythm Association (EHRA)
*Not eligible for CME credit or MOC points





Evolution of Digital Health

Need Assessment

Testing 

Validation 

Usability:

Patients

Healthcare teams

Easy Workflow 

Portals 
Outcome data

Rules and 

Regulations



2018

Technology

Patients

Physicians

Regulators



An APPLE         a day keeps the 
electrophysiologist away?



An APP          a day keeps the 
electrophysiologist away?



Best consumer products to keep the 
electrophysiologist away!



I have palpitation, 

what should I do?

I have AFib,

what should I do?

❖New age of patient physician 
relationship

❖Patients as partners

❖Challenges and Opportunities

“The measure of intelligence is the ability to change”

Albert Einstein



Thank You

@KhaldounTarakji 



Hamid Ghanbari, MD, MPH
Assistant Professor
Vice Chair of Innovation
University of Michigan Cardiovascular Center 

Practical Applications of 
Machine Learning and Artificial 
Intelligence (AI) in Wearable 
Cardiac Monitoring 
Technology



Case 
• 82-year-old Female with history of long-standing persistent AF and 

managed with a rate control strategy (metoprolol) is seen in clinic. She  
continues to have mild symptoms (fatigue/exercise intolerance). How 
do you manage her heart rate?

1. 10-second EKG in the office and titrate Beta Blockers to achieve 
heart rate <110

2. AF ablation
3. Amiodarone
4. Use AI to personalize rate control





What Is Artificial Intelligence?

• Artificial Intelligence                   Prediction

• Prediction 
Input Output

• ex. Autonomous Vehicles



AI = Better + Cheaper Prediction 

• Artificial Intelligence makes prediction
– Cheaper
– Better

• cost of prediction 
the value of complements (data, judgment, and action) 
the value of substitutes (human prediction) 

• Small changes in prediction are meaningful if mistakes are 
costly



Prediction Is the Hidden Input in Decision Making

Agrawal A, Gans J, Goldfarb A. Prediction Machines. 
2018. Harvard Business Review Press.



Artificial Intelligence: Machine Learning 
vs Deep Learning 

7

Artificial intelligence

Machine learning

Deep learning

Artificial intelligence (AI)
Any technique which enable computers to mimic 
human behavior

Machine learning (ML)
A subset of AI techniques which use statistical 
methods to improve machine performance with 
experience

Deep learning (DL)
A subset of machine learning techniques which use 
deep neural networks (DNNs) to build fundamental 
and rigorous representations of data with 
experience



Deep Learning Neural Network

• GPUs

• Cloud 
Computing

• Lots of 
Diverse Data

• Open Source 
Software 

Topol EJ. Nat Med. 2019;25:44-56.



Deep Learning and ECG

Input Output



Deep Learning and ECG

ECG Rhythm



ECG Classification 

1s              1s             1s               1s             1s               1s

1- 4 minutes 125 msec



Inside the Black Box: Detection of 

arrhythmia using deep neural nets

It’s Just Math!

33 convolutional layers and 1 fully connected layer

Rhythm classes: Afib, Atrial, Sinus, SVT, BI, BII1, BII2, BIII, SVT, Junctional

Tiplitzky, Roberts, Mehta, Ghanbari. HRJ 2019



Performance tuning is used to balance precision and sensitivity by 
setting a probability threshold.

Output = Probability for Each Rhythm Label 

13

SVT calls with a 
probability <0.6 can 
be safely converted 
to sinus rhythm



22 BEAT
TYPES

84 RHYTHM 
TYPES

Real patient data mined from the platform

Detailed annotations made and adjudicated by skilled technicians

Gold-standard validation data adjudicated by 3 board-certified 
electrophysiologists

Data: Diversity and Number of Individuals 
Are Critical

14

Database summary
28,000 ECG STRIPS 17,000 PATIENTS 2,000 HOURS OF ECG



Real-world Validation

15
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Validation of Deep Learning for AF Duration

Tiplitzky, Roberts, Mehta, Ghanbari. HRJ 2019



Clinical Use of ECG Detection using DNN

Bruce CJ et al. World J Cardiol. 2016;8:559-65.





Data Are the New Oil

• Data are the key complements to prediction. 

• In order to make a good prediction, the machine must have enough 
individuals (or units of analysis) and diversity in the training data. 

• The particular prediction problem will tell you what you need.
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• Prediction Problem: AF that is likely to be symptomatic

• Results:
• Identified 66/89 (74.12%)  AUC=0.92, F1=0.88  

MiAfib Project

Methods Sensitivity Specificity AUC F1

Markov Chain 
Automatically Generated 

States (MCGENS)
0.90 0.74 0.92 0.88

F-wave suppression 0.18 0.93 0.65 0.23

HRV Based Method 0.06 0.995 0.91 0.11

Li Z, Gryak J, Ghanbari H, et al. Conf Proc IEEE Eng Med Biol Soc. 2018;Jul:4034-7.



Topol EJ. Nat Med. 2019;25:44-56.




