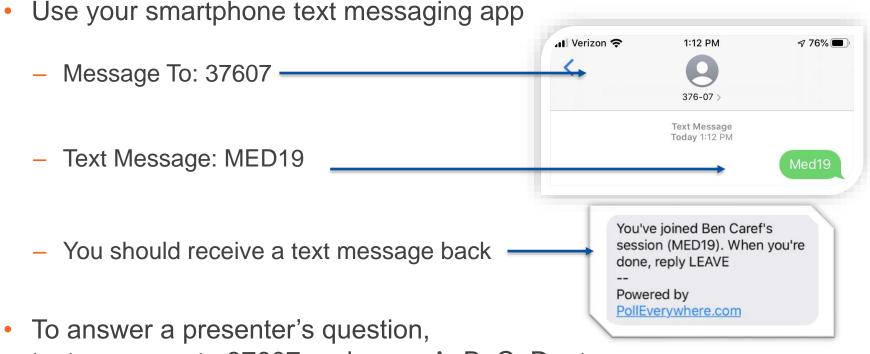
New Opportunities to Improve Management of Patients with or at High Risk of ASCVD Events: *You Weigh the Evidence*

SEPTEMBER 25, 2019 | LOEWS PHILADELPHIA HOTEL | PHILADELPHIA, PA


AGENDA

6:00 рм	Registration and Buffet Dinner
6:30 рм	Program Overview
6:40 рм	New Cholesterol Guidelines: What You Should Know
6:55 рм	Update on Cardiovascular Outcomes Trials of Adjunctive Therapies to Statins
7:15 рм	Personalizing Management of ASCVD Risk Factors
7:30 рм	Case Presentations on ASCVD Prevention
7:45 рм	Panel Discussion and Question & Answer Session
8:00 pm	Adjourn

Faculty slides are available online: medtelligence.net/Sept25 Scroll to the "Related" section and click on "Syllabus" New Opportunities to Improve Management of Patients with or at High Risk of ASCVD Events: You Weigh the Evidence

September 25, 2019

Instructions for Audience Response

text message to 37607 and press A, B, C, D, etc.

What best describes your profession?

- A. Family practice
- B. Resident
- C. Student
- D. Life member
- E. Other healthcare provider
- F. Not involved in patient care

How many patients with dyslipidemia(s) do you typically see each week?

- A. None
- **B**. 1-20
- **C**. 21-40
- **D.** 41-60
- **E.** >60

New Opportunities to Improve Management of Patients with or at High Risk of ASCVD Events: You Weigh the Evidence

September 25, 2019

Welcome and Program Overview

DEEPAK L. BHATT, MD, MPH, CHAIR

Tonight's Faculty

Deepak L. Bhatt, MD, MPH, Chair

Executive Director of Interventional Cardiovascular Programs Brigham and Women's Hospital Heart and Vascular Center Professor of Medicine Harvard Medical School Boston, MA

Erin D. Michos, MD, MHS

Associate Professor of Medicine and Epidemiology Ciccarone Center for the Prevention of Cardiovascular Disease Division of Cardiology Johns Hopkins School of Medicine Baltimore, MD

Meeting Announcements

- In your folder:
 - Agenda
 - Faculty bios
 - Learning objectives
 - CME information
- Question cards on table
- No unauthorized recording devices allowed (audio, video, cell, camera)
- Place cell phones on vibrate or silence mode
- Submit questions to faculty by using a question card

Access slides online

- Faculty slides are available here: medtelligence.net/sept25
- Scroll to the "Related" section and click on "Syllabus"

Online CME credit

- All attendees will receive an email with a link to the evaluation form
- Once you complete the online evaluation form, you will receive an email with a link to download your CME certificate
 - Or, you can access your certificate within your Medtelligence/ReachMD Profile

Grab your smartphones or iPads!

Learning Assessment 1

What does the 2018 ACC/AHA Guideline on Blood Cholesterol Management algorithm recommend for a 69 y/o man with clinical ASCVD?

- A. Put patient on low-intensity statin therapy and healthy lifestyle
- B. Put patient on moderate-intensity statin therapy
- C. Put patient on high-intensity statin therapy
- D. Treat to obtain an LDL-C reduction of 25%

Learning Assessment 2

You have a patient with clinical ASCVD who has a TG level of 212 mg/dL and an LDL-C of 69 mg/dL. Which of the following should you recommend?

- A. Fibrate (eg, fenofibrate)
- B. Nicotinic acid (eg, niacin)
- C. Prescription EPA
- D. Omega-3 dietary supplement
- E. Nothing

Learning Assessment 3

Compared with placebo in REDUCE-IT, pure eicosapentaenoic acid (EPA) 4 g/day reduced the primary endpoint (5-point MACE) by

- A. 15%
- B. 25%
- C. 50%
- D. No difference in events

New Cholesterol Guidelines: What You Should Know

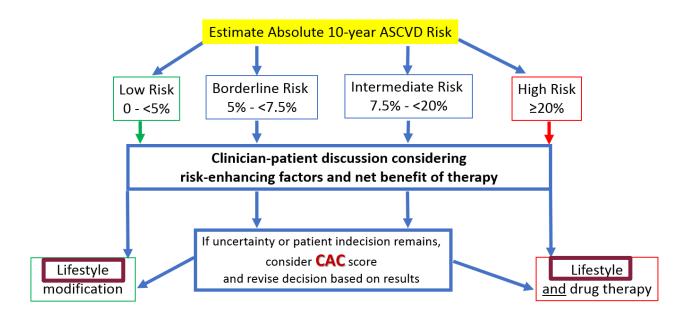
ERIN MICHOS, MD, MHS

ACC Risk Calculator Plus to Assess Risk Category

1. For primary prevention, use the calculator to Assess Risk Category

<5% "Low Risk"	5% to <7.5% "Borderline Risk"	≥7.5% to <20% "Intermediate Risk"	≥20% "High Risk"
-------------------	-------------------------------------	---	---------------------

- Estimates 10-year hard ASCVD (nonfatal MI, CHD death, stroke) for ages 40-79 and lifetime risk for ages 20-59
- Intended to promote patient-provider risk discussion, and best strategies to reduce risk
- ≥7.5% identifies statin eligibility, not a mandatory prescription for a statin


Current Age 🔁 *	Sex *		Race *		
	*	Male Fema	ale White	e African Ame	rican Other
Age must be between 20-79					
Systolic Blood Pressure (mm Hg) *		Diastolic Blood Pressure (mm Hg) ^O		
	÷		÷		
Value must be between 90-200		Value must be between 60-130			
Total Cholesterol (mg/dL) *		HDL Cholesterol (mg/dL) *		LDL Cholesterol (mg/dL	9 0
			*		
Value must be between 130 - 320		Value must be between 20 - 100		Value must be between 30-300	
History of Diabetes? *		Smoker? 🔁 *			
Yes	No	Current 🕄	Form	ner 🕄	Never 🚯
On Hypertension Treatment? *		On a Statin? 🔁 ^O		On Aspirin Therapy? 🤂	0
Yes	No	Yes	No	Yes	No

2. Then use the new ACC/AHA Blood Cholesterol guideline algorithms to guide management

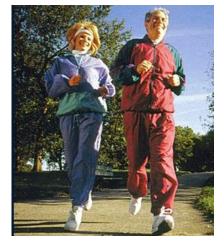
tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate

2019 ACC/AHA Primary Prevention Guideline

Assessment of ASCVD: Lifelong Lifestyle

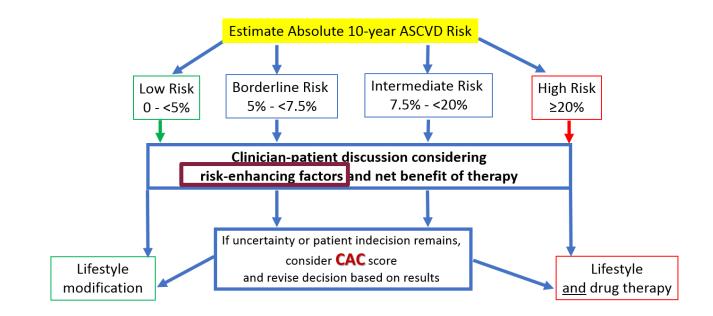
Courtesy of Erin Michos.

Nutrition Lifestyle Recommendations: Lipids and BP


- Dietary patterns emphasis-based:
 - DASH and Mediterranean-style eating plans
- Fruits, vegetables, and whole grains
- 30 35% fat intake
 - <6% saturated fats, no *trans* fats
- Low sodium (<2400 mg/day)
- Cut out processed or pre-prepared food
- Healthy eating for a lifetime

Eckel RH et al, Circulation 129 (25 Suppl 2):S76-99, 2014.

Physical Activity Guidelines: Lipids and BP


Advise adults to engage in aerobic physical activity

- 3 to 4 sessions a week
- lasting on average 40 min per session
- involving moderate-to-vigorous intensity physical activity.

Eckel RH et al, Circulation 129 (25 Suppl 2):S76-99, 2014.

2019 ACC/AHA Primary Prevention Guideline

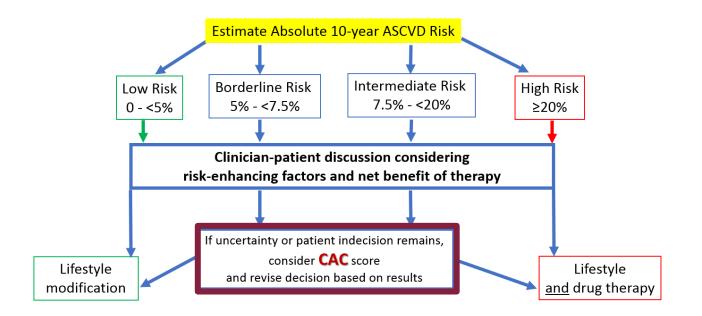
Assessment of ASCVD: Risk Enhancing Factors

Courtesy of Erin Michos.

2019 ACC/AHA Primary Prevention Guideline: Risk Enhancing Factors

Risk-Enhancing Factors

- Family history of premature ASCVD (men, age <55y; women, <65 y)
- Primary hypercholesterolemia (LDL-C 160–189 mg/dL [4.1–4.8 mmol/L]; non– HDL-C 190–219 mg/dL [4.9–5.6 mmol/L])
- Metabolic syndrome (increased waist circumference [by ethnically appropriate cutpoints], elevated triglycerides [>150 mg/dL, nonfasting], elevated blood pressure, elevated glucose, and low HDL-C [<40 mg/dL in men; <50 mg/dL in women] are factors; a tally of 3 makes the diagnosis)
- **Chronic kidney disease** (eGFR 15–59 mL/min/1.73 m² with or without albuminuria; not treated with dialysis or kidney transplantation)
- Chronic inflammatory conditions, such as psoriasis, RA, lupus, or HIV/AIDS


2019 ACC/AHA Prevention Guideline: Risk Enhancing Factors, cont'd

Risk-Enhancing Factors

- History of premature menopause (before age 40 y) and history of pregnancyassociated conditions that increase later ASCVD risk, such as preeclampsia
- **High-risk race/ethnicity** (e.g., South Asian ancestry)
- Lipids/biomarkers: associated with increased ASCVD risk
- Persistently elevated, primary hypertriglyceridemia (≥175 mg/dL, nonfasting);
- If measured:
 - Elevated high-sensitivity C-reactive protein (≥2.0 mg/L)
 - **Constant Set Set up** Elevated Lp(a): Lp(a) \geq 50 mg/dL or \geq 125 nmol/L, especially at higher levels of Lp(a)
 - Elevated apoB (≥130 mg/dL): A level ≥130 mg/dL corresponds to an LDL-C >160 mg/dL
 - ♥ ABI <0.9

2019 ACC/AHA Primary Prevention Guideline

Assessment of ASCVD: Use of CAC

Hypertriglyceridemia

	_	Recommendations for Hypertriglyceridemia		
COR	LOE	Recommendations		
I	B-NR	In adults 20 years of age or older with moderate hypertriglyceridemia (fasting or nonfasting triglycerides 175 to 499 mg/dL [1.9 to 5.6 mmol/L]), clinicians should address and treat lifestyle factors (obesity and metabolic syndrome), secondary factors (diabetes mellitus, chronic liver or kidney disease and/or nephrotic syndrome, hypothyroidism), and medications that increase triglycerides.		
lla	B-R	In adults 40 to 75 years of age with moderate or severe hypertriglyceridemia and ASCVD risk of 7.5% or higher, it is reasonable to reevaluate ASCVD risk after lifestyle and secondary factors are addressed and to consider a persistently elevated triglyceride level as a factor favoring initiation or intensification of statin therapy (see Section 4.4.2.).		

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology Foundation/ American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082-e1143.

Major Secondary Causes of Hypertriglyceridemia

- Diabetes Mellitus, Insulin Resistance
- Obesity
- Alcohol
- Chronic Kidney Disease
- Nephrotic syndrome
- Hypothyroidism
- HIV
- Hepatocellular disease
- Inflammatory diseases

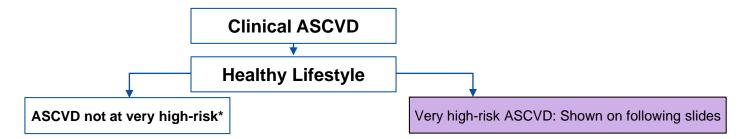
Bays HE. In: Kwiterovich PO Jr, ed. The Johns Hopkins Textbook of Dyslipidemia. 1st ed. Lippincott Williams & Wilkins;2010:245-57.

Medications that Cause of Hypertriglyceridemia

- Oral estrogens
- Bile-acid sequestrants
- Antiretroviral regimens
 - especially for HIV disease
- Phenothiazine's 2nd-generation
- Nonselective beta-blockers
- Diuretics
- Glucocorticoids
- Immunosuppressants
- Tamoxifen
- Isotretinoin

Bays HE. In: Kwiterovich PO Jr, ed. The Johns Hopkins Textbook of Dyslipidemia. 1st ed. Lippincott Williams & Wilkins; 2010:245-57.

Hypertriglyceridemia


		Recommendations for Hypertriglyceridemia		
COR	LOE	Recommendations		
I	B-NR	In adults 20 years of age or older with moderate hypertriglyceridemia (fasting or nonfasting triglycerides 175 to 499 mg/dL [1.9 to 5.6 mmol/L]), clinicians should address and treat lifestyle factors (obesity and metabolic syndrome), secondary factors (diabetes mellitus, chronic liver or kidney disease and/or nephrotic syndrome, hypothyroidism), and medications that increase triglycerides.		
lla	B-R	In adults 40 to 75 years of age with moderate or severe hypertriglyceridemia and ASCVD risk of 7.5% or higher, it is reasonable to reevaluate ASCVD risk after lifestyle and secondary factors are addressed and to consider a persistently elevated triglyceride level as a factor favoring initiation or intensification of statin therapy (see Section 4.4.2.).		

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology Foundation/ American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082-e1143.

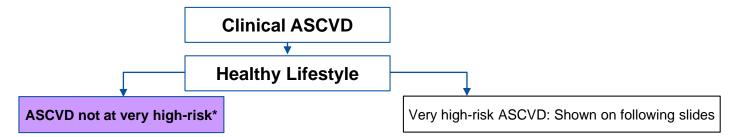
2018 AHA/ACC/ Multi-Society Guideline on the Management of Blood Cholesterol: <u>Secondary Prevention</u>

2018 AHA/ACC/ Multi-Society Guideline on the Management of Blood Cholesterol: <u>Secondary Prevention</u>

*ACS, hx of MI, stable or unstable angina, coronary or other arterial revascularization, stroke, transient ischemic attack (TIA), or peripheral artery disease (PAD) including aortic aneurysm, all of atherosclerotic origin.

Class I (Strong). Benefit >>> Risk. Class IIa (Moderate). Benefit >> Risk. Class IIb (Weak). Benefit ≥ Risk.

Grundy SM et al. Circulation. 2019;139:e1082-e1143.

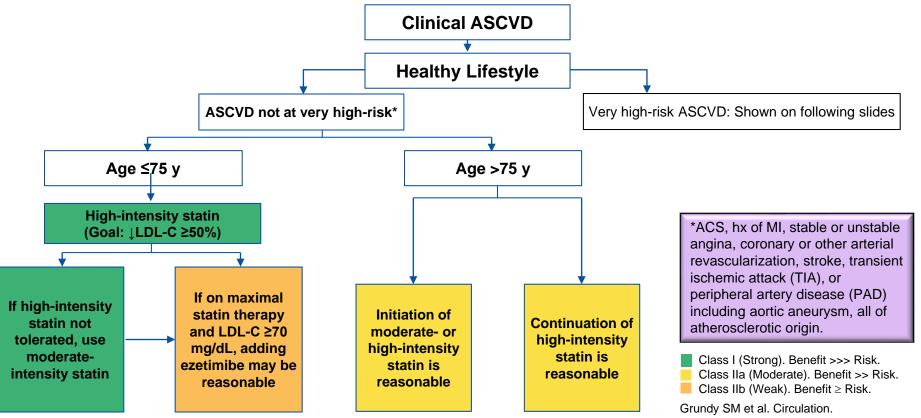

Very High-Risk ASCVD Patients

Major ASCVD Events	
Recent ACS (within the past 12 mo)
History of MI (other than recent A	CS event listed above)
History of ischemic stroke	
Symptomatic peripheral arterial di	sease (history of claudication with ABI <0.85, or previous revascularization or amputation)
High-Risk Conditions	
Age ≥65 y	
Heterozygous familial hypercholes	terolemia
History of prior coronary artery by	pass surgery or percutaneous coronary intervention outside of the major ASCVD event(s)
Diabetes mellitus	
Hypertension	
CKD (eGFR 15-59 mL/min/1.73 m ²	
Current smoking	
Persistently elevated LDL-C (LDL-C	≥100 mg/dL [≥2.6 mmol/L]) despite maximally tolerated statin therapy and ezetimibe
History of congestive HF	

*Very high risk includes a history of multiple major ASCVD events or 1 major ASCVD event and multiple high-risk conditions.

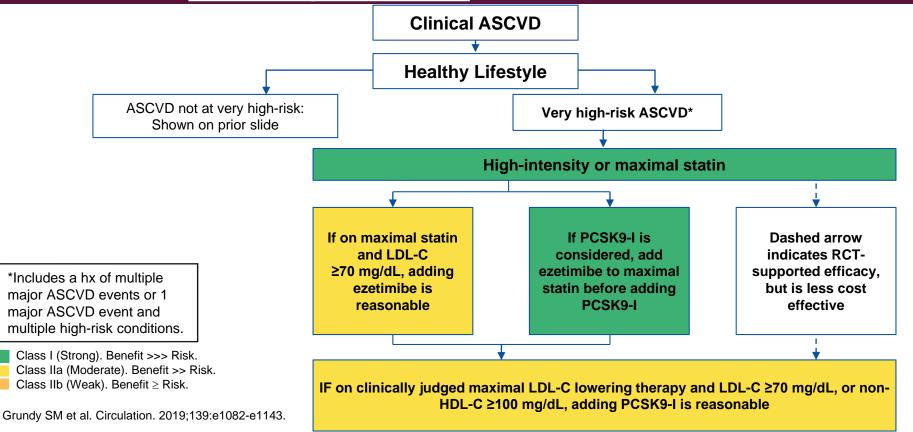
Grundy SM, Stone NJ et al. AHA/ACC/Multi-Society 2018 Chol Guidelines. Circulation. 2019;139:e1082-e1143.

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: <u>Secondary Prevention</u>

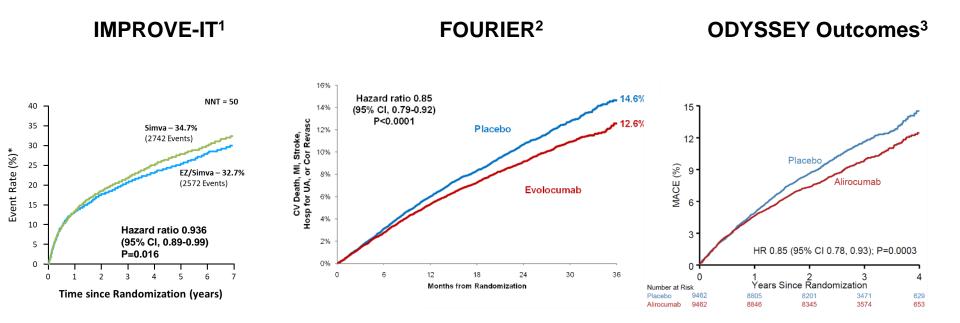


*ACS, hx of MI, stable or unstable angina, coronary or other arterial revascularization, stroke, transient ischemic attack (TIA), or peripheral artery disease (PAD) including aortic aneurysm, all of atherosclerotic origin.

Class I (Strong). Benefit >>> Risk.
Class IIa (Moderate). Benefit >> Risk.
Class IIb (Weak). Benefit ≥ Risk.


Grundy SM et al. *Circulation*. Circulation. 2019;139:e1082-e1143.

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: <u>Secondary Prevention</u>



2019;139:e1082-e1143.

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: <u>Secondary Prevention</u>

Successful Statin Add-on Trials (5–15% RRR)

CI=confidence interval; Cor Revasc=coronary revascularization; EZ=ezetimibe; HR=hazard ratio; MACE=major adverse cardiovascular events; MI =mvocardial infarction; NNT=number needed to treat; Simva=simvastatin; UA unstable angina.

- 1. Cannon CP et al. N Engl J Med. 2015;372:2387-97.
- 2. Sabatine MS et al. N Engl J Med. 2017;376:1713-22.
- 3. Schwartz GG et al. N Engl J Med. 2018;379:2097-107.

Cholesterol Guidelines – Top 10 Take Home Messages

1. In all individuals, emphasize a heart-healthy lifestyle across the life course.

A healthy lifestyle reduces atherosclerotic cardiovascular disease (ASCVD) risk at all ages. In younger individuals, healthy lifestyle can reduce development of risk factors and is the foundation of ASCVD risk reduction.

In young adults 20 to 39 years of age, an assessment of lifetime risk facilitates the clinician–patient risk discussion (see No. 6) and emphasizes intensive lifestyle efforts. In all age groups, lifestyle therapy is the primary intervention for metabolic syndrome.

Grundy SM et al. Circulation. 2019;139:e1082-e1143.

Top 10 Take Home Messages

2. In patients with clinical ASCVD, reduce low-density lipoprotein cholesterol (LDL-C) with high-intensity statin therapy or maximally tolerated statin therapy.

The more LDL-C is reduced on statin therapy, the greater will be subsequent risk reduction.

Use a maximally tolerated statin to lower LDL-C levels by \geq 50%.

Grundy SM et al. Circulation. 2019;139:e1082-e1143.

3. In very high-risk ASCVD, use an LDL-C threshold of 70 mg/dL to consider addition of nonstatins to statin therapy.

- Very high risk includes a history of multiple major ASCVD events or 1 major ASCVD event and multiple high-risk conditions.
- In very high-risk ASCVD patients, it is reasonable to add ezetimibe to maximally tolerated statin therapy when the LDL-C level remains ≥70 mg/dL.
- In patients at very high risk whose LDL-C level remains ≥70 mg/dL on maximally tolerated statin and ezetimibe therapy, adding a PCSK9 inhibitor is reasonable, although the long-term safety (>3 years) is uncertain and costeffectiveness is low at mid-2018 list prices.

4. In patients with severe primary hypercholesterolemia (LDL-C level ≥190 mg/dL) without calculating 10-year ASCVD risk, begin high-intensity statin therapy without calculating 10-year ASCVD risk.

- If the LDL-C level remains ≥100 mg/dL, adding ezetimibe is reasonable
- If the LDL-C level on statin plus ezetimibe remains ≥100 mg/dL & the patient has multiple factors that increase subsequent risk of ASCVD events, PCSK9 inhibitor may be considered.

5. In patients 40 to 75 years of age with diabetes mellitus and LDL-C ≥70 mg/dL, start moderate-intensity statin therapy without calculating 10-year ASCVD risk.

In patients with diabetes mellitus at higher risk, especially those with multiple risk factors or those 50 to 75 years of age, it is reasonable to use a high-intensity statin to reduce the LDL-C level by \geq 50%.

6. In adults 40 to 75 years of age evaluated for primary ASCVD prevention, have a clinician-patient risk discussion before starting statin therapy.

Risk discussion should include a review of

- major risk factors (eg, cigarette smoking, elevated blood pressure, LDL-C, hemoglobin A1C [if indicated], and calculated 10-year risk of ASCVD);
- the presence of risk-enhancing factors (see No. 8);
- the potential benefits of lifestyle and statin therapies;
- the potential for adverse effects and drug–drug interactions;
- the consideration of costs of statin therapy; and
- the patient preferences & values in shared decision-making.

7. In adults 40 to 75 years of age without diabetes mellitus and with LDL-C levels ≥70 mg/dL, at a 10-year ASCVD risk of ≥7.5%, start a moderate-intensity statin if a discussion of treatment options favors statin therapy.

Risk-enhancing factors favor statin therapy (see No. 8).

If risk status is uncertain, consider using coronary artery calcium (CAC) to improve specificity (see No. 9). If statins are indicated, reduce LDL-C levels by \geq 30%, and if 10-year risk is \geq 20%, reduce LDL-C levels by \geq 50%.

8. In adults 40 to 75 years of age without diabetes mellitus and 10year risk of 7.5% to 19.9% (intermediate risk), risk-enhancing factors favor initiation of statin therapy (see No. 7).

Risk-enhancing factors include

- family history of premature ASCVD;
- persistently elevated LDL-C levels ≥160 mg/dL;
- metabolic syndrome;
- chronic kidney disease;
- history of preeclampsia or premature menopause (age <40 yrs);
- chronic inflammatory disorders (eg, rheumatoid arthritis, psoriasis, or chronic HIV);
- high-risk ethnic groups (eg, South Asian);
- persistent elevations of triglycerides ≥175 mg/dL

8. In adults 40 to 75 years of age without diabetes mellitus and 10year risk of 7.5% to 19.9% (intermediate risk), risk-enhancing factors favor initiation of statin therapy (see No. 7).

Risk-enhancing factors include family history of premature ASCVD; persistently elevated LDL-C levels ≥160 mg/dL; metabolic syndrome; chronic kidney disease; history of preeclampsia or premature menopause (age <40 years); chronic inflammatory disorders (eg, rheumatoid arthritis, psoriasis, or chronic HIV); high-risk ethnic groups (eg, South Asian); persistent elevations of triglycerides ≥175 mg/dL; and, if measured in selected individuals

- apolipoprotein B ≥130 mg/dL;
- high-sensitivity C-reactive protein ≥2.0 mg/L;
- ankle-brachial index <0.9 and $Lp(a) \ge 50 \text{ mg/dL}$, especially at higher values of Lp(a).

Risk-enhancing factors may favor statin therapy in patients at 10-year risk of 5–7.5% (borderline risk)

9. In adults 40 to 75 years of age without diabetes mellitus and with LDL-C levels ≥70 mg/dL – 189 mg/dL, at a 10-year ASCVD risk of ≥7.5% to 19.9%, if a decision about statin therapy is uncertain, consider measuring CAC.

- If CAC is zero, treatment with statin therapy may be withheld or delayed, except in cigarette smokers, those with diabetes mellitus, and those with a strong family history of premature ASCVD.
- A CAC score of 1 to 99 favors statin therapy, especially in those ≥55 years of age.
- For any patient, if the CAC score is ≥100 Agatston units or ≥75th percentile, statin therapy is indicated unless otherwise deferred by the outcome of clinicianpatient risk discussion.

 Assess adherence and percentage response to LDL-C-lowering medications and lifestyle changes with repeat lipid measurement 4 to 12 weeks after statin initiation or dose adjustment, repeated every 3 to 12 months as needed.

- Define responses to lifestyle and statin therapy by percentage reductions in LDL-C levels compared with baseline.
- In ASCVD patients at very high-risk, triggers for adding nonstatin drug therapy are defined by threshold LDL-C levels ≥70 mg/dL (≥1.8 mmol/L) on maximal statin therapy (see No. 3).

THANK YOU!

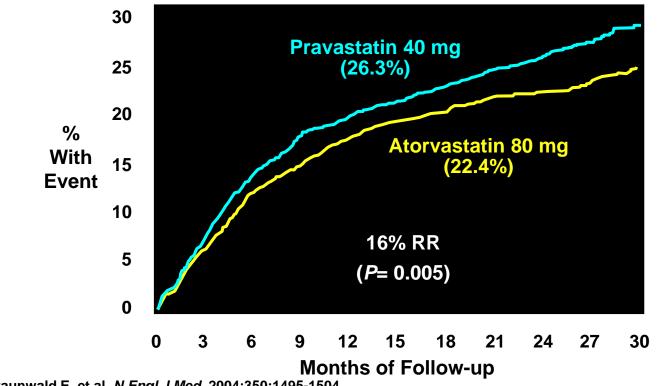
Update on Cardiovascular Outcomes Trials of Adjunctive Therapies to Statins

Deepak L. Bhatt, MD, MPH

Executive Director of Interventional Cardiovascular Programs, Brigham and Women's Hospital Heart and Vascular Center Professor of Medicine, Harvard Medical School

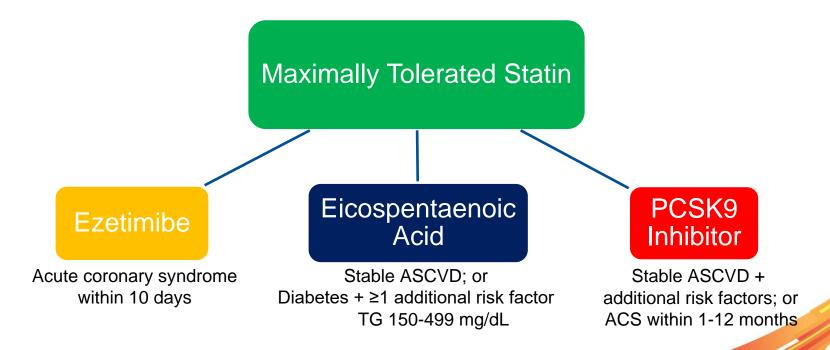
BRIGHAM AND WOMEN'S HOSPITAL

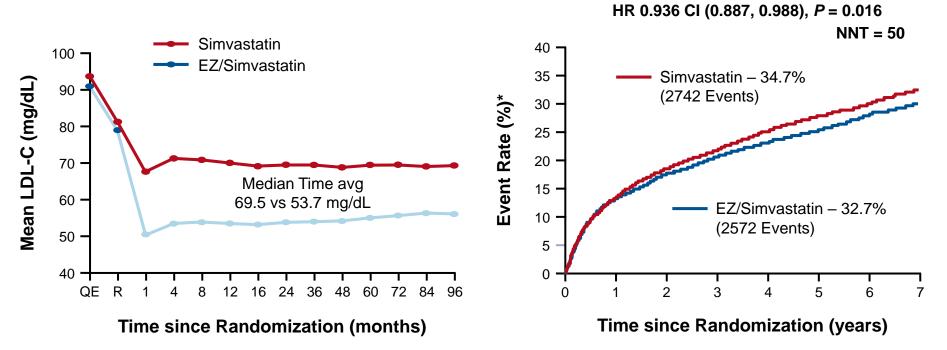
Heart & Vascular Center


Disclosures

Dr. Deepak L. Bhatt discloses the following relationships - Advisory Board: Cardax, Cereno Scientific, Elsevier Practice Update Cardiology, Medscape Cardiology, PhaseBio, Regado Biosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care, TobeSoft; Chair: American Heart Association Quality Oversight Committee; Data Monitoring Committees: Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St. Jude Medical, now Abbott), Cleveland Clinic (including for the ExCEED trial, funded by Edwards), Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo), Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org; Vice-Chair, ACC Accreditation Committee), Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute; RE-DUAL PCI clinical trial steering committee funded by Boehringer Ingelheim; AEGIS-II executive committee funded by CSL Behring), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), Medtelligence/ReachMD (CME steering committees), Population Health Research Institute (for the COMPASS operations committee, publications committee, steering committee, and USA national co-leader, funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today's Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Research Funding: Abbott, Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Chiesi, CSL Behring, Eisai, Ethicon, Ferring Pharmaceuticals, Forest Laboratories, Idorsia, Ironwood, Ischemix, Lilly, Medtronic, PhaseBio, Pfizer, Regeneron, Roche, Sanofi Aventis, Synaptic, The Medicines Company; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald's Heart Disease); Site Co-Investigator: Biotronik, Boston Scientific, St. Jude Medical (now Abbott), Svelte; Trustee: American College of Cardiology; Unfunded Research: FlowCo, Fractyl, Merck, Novo Nordisk, PLx Pharma, Takeda.

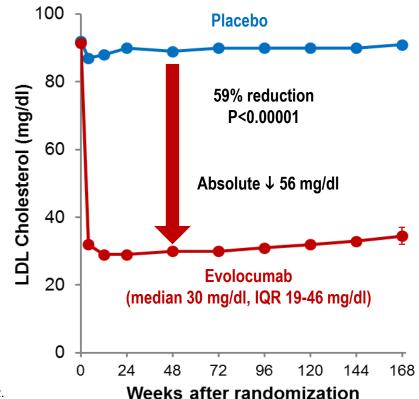
This presentation includes off-label and/or investigational uses of drugs.


All-Cause Death or Major CV Events in All Randomized Subjects

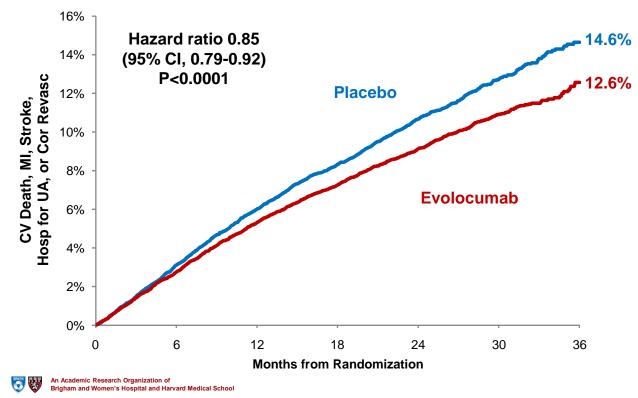

Cannon CP, Braunwald E, et al. N Engl J Med. 2004;350:1495-1504.

RCT-Proven Non-Statin Additive Therapies for ASCVD Risk Reduction in High-Risk Patients

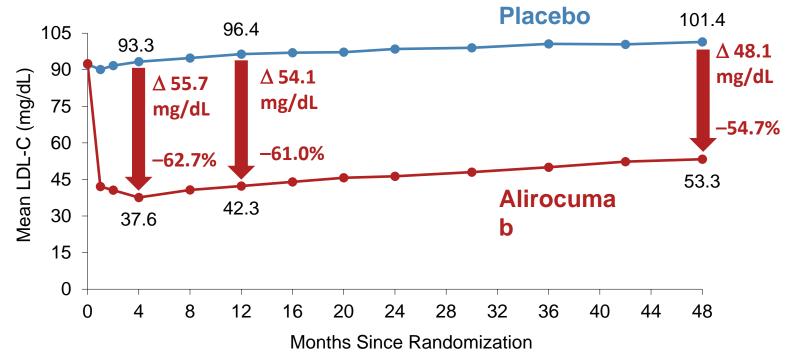
Courtesy of Dr. Carl Orringer, LBCT discussant. AHA 2018, Chicago. Orringer CE. *Trends in Cardiovasc Med.* 2019. May 4. pii: S1050-1738(19)30054-4.


IMPROVE-IT: Primary Results 18,144 ACS patients randomized to simvastatin alone or ezetimibe (EZ)/simvastatin, 6-year median follow up

*Primary endpoint (cardiovascular death, MI, UA, coronary revascularization, or stroke).

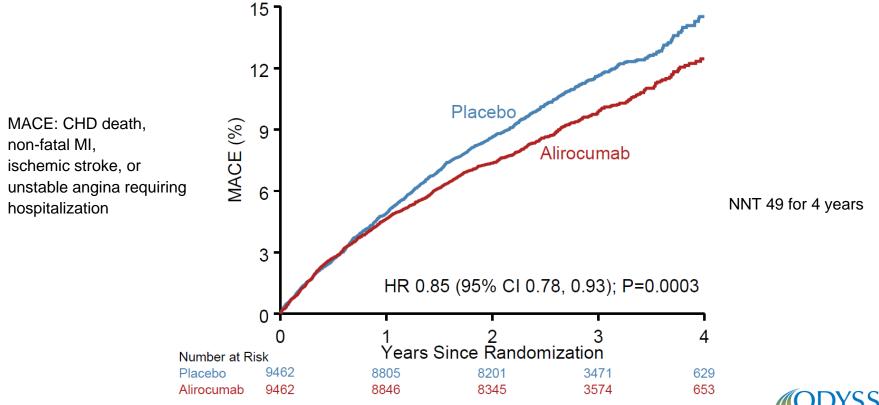

Cannon CP, Blazing MA, Giugliano RP, et al.... Braunwald E, Califf RM. N Engl J Med. 2015;372(25):2387–2397.

FOURIER: Effects of PCSK9i Evolocumab on LDL-C 27,564 high-risk, stable patients with established CV disease


FOURIER: Effects of PCSK9i Evolocumab, Primary Endpoint

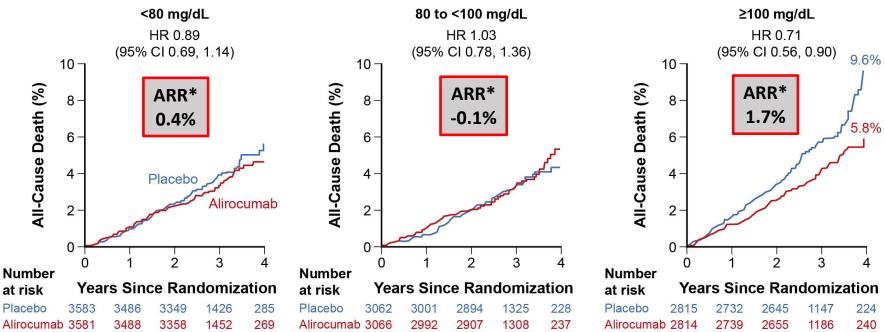
27,564 high-risk, stable patients with established CV disease

Sabatine MS, et al. NEJM. 2017;376:1713-22.


ODYSSEY OUTCOMES: LDL-C On-Treatment Analysis

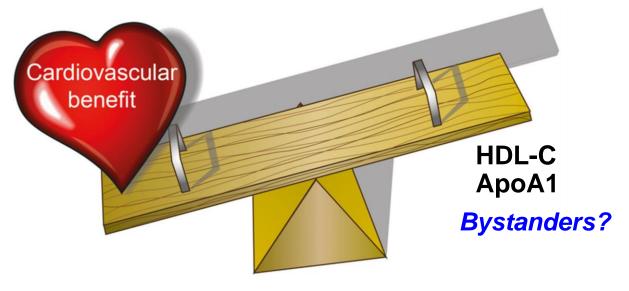
Excludes LDL-C values after premature treatment discontinuation or blinded switch to placebo. Approximately 75% of months of active treatment were at the 75 mg dose.

Schwartz GG, Steg PG, et al. NEJM Nov 7, 2018 doi: 10.1056/NEJMoa1801174. Steg PG, ACC 2018, Orlando, FL.


Primary Efficacy Endpoint: MACE

Schwartz GG, Steg PG, et al. NEJM Nov 7, 2018 doi: 10.1056/NEJMoa1801174. Steg PG, ACC 2018, Orlando, FL.

All-cause Death in Three Predefined Categories of Baseline LDL-C



*Absolute risk reduction: Interaction P=0.005

Post hoc analysis

Steg PG, Szarek M, Bhatt DL, et al., Circulation 2019;140:103-112.

Triglycerides a Causal Risk Factor?

Europear Heart Journa

Triglyceride-rich lipoproteins ApoC3, ApoA5, AngPTL4

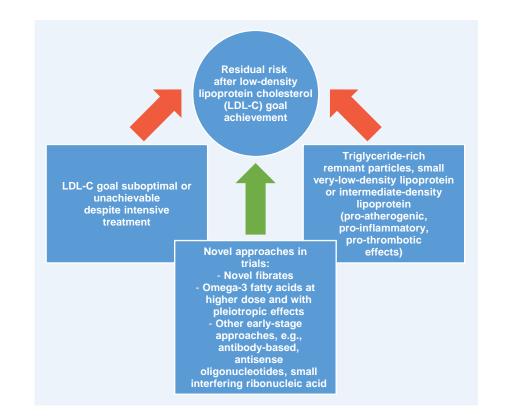
Causal risk factors?

Adapted with permission from Libby P. Triglycerides on the rise: should we swap seats on the seesaw? Eur Heart J. 2015;36:774-776.

A naturally randomized trial evaluating the potential clinical benefit of triglyceride lowering therapies on the risk of coronary heart disease

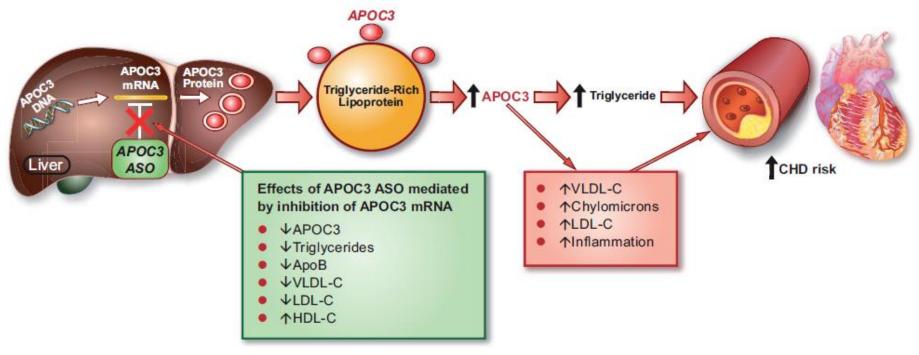
Brian A. Ference MD, MPhil, MSc, John J. P. Kastelein MD, PhD, Kausik K. Ray MD, MPhil, Henry N. Ginsberg MD, M. John Chapman PhD, DSc, Chris J. Packard DSc, Ulrich Laufs MD, PhD, Adam S. Butterworth PhD, Emanuele Di Angelantonio, MD, John Danesh FRCP, DPhil, Stephen J. Nicholls MBBS, PhD, Deepak L. Bhatt, MD, MPH, Marc S. Sabatine MD, MPH, and Alberico L. Catapano PhD

UNIVERSITY OF CAMBRIDGE Centre for Naturally Randomized Trials

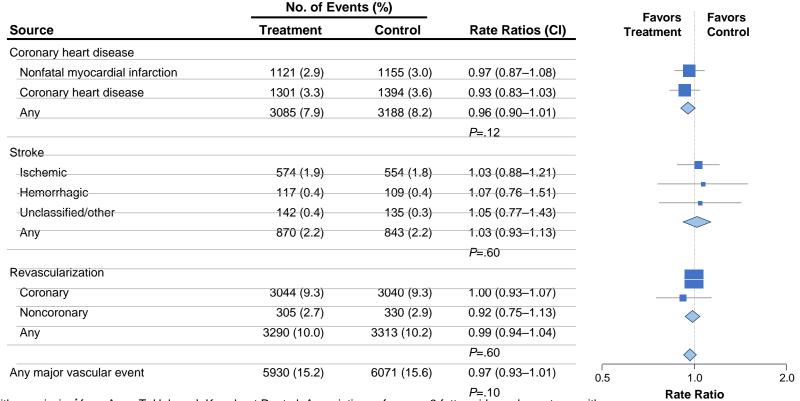

Combined Effect of LPL and LDLR Scores on Lipids & CHD: 2 x 2 factorial analysis

2x2 Group	∆ Triglycerides, mg/dL (95% Cl)	Δ LDL-C, mg/dL (95% Cl)	Δ apoB, mg/dL (95% CI)		OR _{CHD} (95% CI)
Both scores > median N = 104,694	-24.3 (-16.2, -32.4)	-4.9 (-2.1, -7.7)	-6.4 (-4.4, -8.5)		0.842 (0.811 - 0.874)
<i>LDLR</i> score > median N = 112,018	-3.8 (-15.1, -7.5)	-4.8 (-2.0, -7.6)	-3.4 (-1.5, -5.2)		0.921 (0.885 - 0.958)
<i>LPL</i> score > median N = 122,599	-20.1 (-13.3, -28.8)	-0.1 (-0.5, 0.3)	-3.0 (-1.2, -4.9)	-	0.924 (0.889 - 0.960)
Both scores ≤ median N = 131,167	Reference	Reference	Reference		Reference
oB=apolipoprotein B; CHD=cc oprotein cholesterol; LDLR=lo	w-density lipoprotein	•	tein 0.6 0.7	0.8 0.9	1.0 1.1 1.2 1.3 1

lipase; OR_{CHD}=odds ratio coronary heart disease.


Adapted from Ference BA, Kastelein JJP, Ray KK, et al. Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants With Risk of Coronary Heart Disease. JAMA. 2019;321:364-373.

Promising Therapies for Hypertriglyceridemia

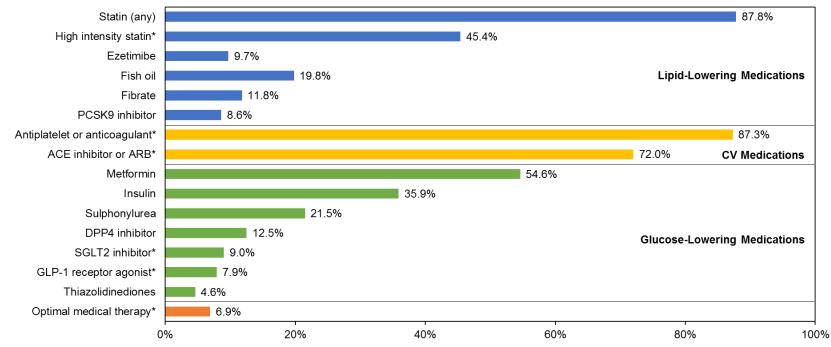

Adapted with permission* from Ganda OP, Bhatt DL, Mason RP, Miller M, Boden WE. Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management. *J Am Coll Cardiol.* 2018;72:330-343. [*https://creativecommons.org/licenses.org/by-nc/4.0/]

Targeting RNA to Lower Triglycerides: Long Strides from Short Molecules

Qamar A, Libby P, Bhatt DL. Targeting RNA to lower triglycerides: long strides from short molecules. European Heart Journal. 2019;40:2797–2800.

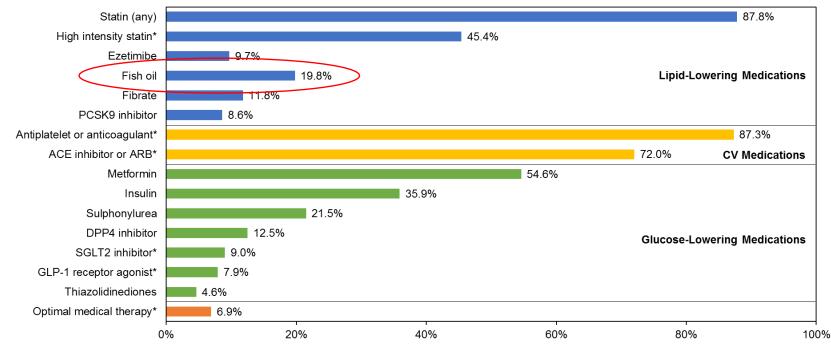
Low Dose Omega-3 Mixtures Show No Significant Cardiovascular Benefit

Adapted with permission^{*} from Aung T, Halsey J, Kromhout D, et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: Meta-analysis of 10 trials involving 77917 individuals. *JAMA Cardiol.* 2018;3:225-234. [*https://creativecommons.org/licenses.org/by-nc/4.0/]


Confusion Regarding Fish Oil Dietary Supplements

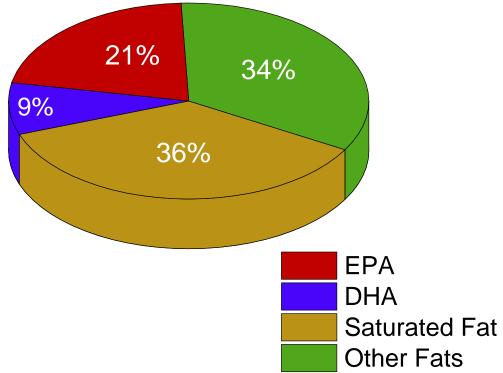
- Leading DS taken by US adults is fish oil¹
 - 19 million fish oil DS consumed each month¹
- ~80% of PharmDs and MDs who recommend fish oil supplements think, mistakenly, that they are FDA-approved OTC²
 - 30% of PharmDs and 22% of MDs believe Rx and DS are similar in strength and content²

"Omega-3 Supplements: In Depth | NCCIH". NCCIH. N.p., 2009. Web. 7 Apr. 2016.
 Fairleigh Dickinson University's Public Mind™ Poll, Omega-3 Physician/Pharmacist Study, March 2013.

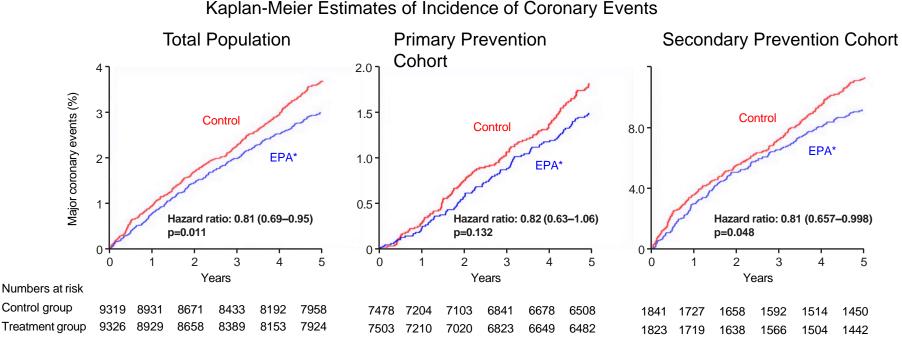

Use of CV and Glucose-lowering Medications among Patients with DM and ASCVD in GOULD

*Components of optimal medical therapy: high-intensity statin, antiplatelet agent or anticoagulant (excluding triple therapy), ACE inhibitor or ARB (excluding glomerular filtration rate <30 mL/[min·1.73 m2]), and SGLT2 inhibitor or GLP1 receptor agonist (for type 2 diabetes mellitus; excluding glomerular filtration rate <30 mL/[min·1.73 m2]). ACE indicates angiotensin converting enzyme; ARB, angiotensin II receptor blocker; CV, cardiovascular; DPP4, dipeptidyl peptidase-4; GLP1, glucagon-like peptide 1; PCSK9, proprotein convertase subtilisin/kexin type 9; and SGLT2, sodium-glucose cotrans-porter-2.

Arnold SV, de Lemos JA, Rosenson RS, et al. Circulation. 2019;140:618–620. DOI: 10.1161/CIRCULATIONAHA.119.041730

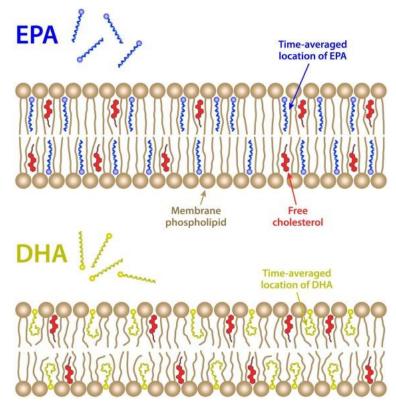

Use of CV and Glucose-lowering Medications among Patients with DM and ASCVD in GOULD

*Components of optimal medical therapy: high-intensity statin, antiplatelet agent or anticoagulant (excluding triple therapy), ACE inhibitor or ARB (excluding glomerular filtration rate <30 mL/[min·1.73 m2]), and SGLT2 inhibitor or GLP1 receptor agonist (for type 2 diabetes mellitus; excluding glomerular filtration rate <30 mL/[min·1.73 m2]). ACE indicates angiotensin converting enzyme; ARB, angiotensin II receptor blocker; CV, cardiovascular; DPP4, dipeptidyl peptidase-4; GLP1, glucagon-like peptide 1; PCSK9, proprotein convertase subtilisin/kexin type 9; and SGLT2, sodium-glucose cotrans-porter-2.


Arnold SV, de Lemos JA, Rosenson RS, et al. Circulation. 2019;140:618–620. DOI: 10.1161/CIRCULATIONAHA.119.041730

Fatty Acid Content of Leading U.S. Fish Oil Supplement

Adapted with permission* from Mason RP, Sherratt SCR. Biochem Biophys Res Commun. 2017;483 :425-429. [*https://creativecommons.org/licenses.org/by-nc/4.0/]


JELIS Suggests CV Risk Reduction with EPA in Japanese Hypercholesterolemic Patients

*1.8 g/day

Adapted with permission from Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. *Lancet.* 2007;369:1090-1098.

EPA and DHA Have Differing Effects on Cellular Membranes

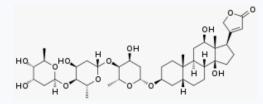
Reproduced with permission* from Sherratt SCR, Mason RP. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction. Chem Phys Lipids. 2018;212:73-79. [*https://creativecommons.org/licenses.org/by-nc/4.0/]

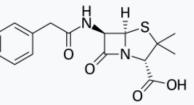
Transformational Medicines Isolated from Nature:

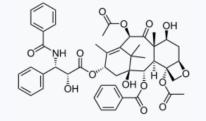
Unique Molecules from these Sources have Proven Clinical Efficacy

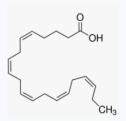
Purple Foxglove

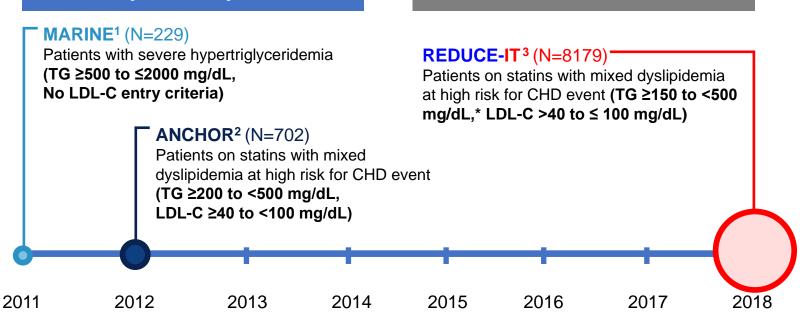
Penicillium Mold


Paclitaxel




Icosapent Ethyl

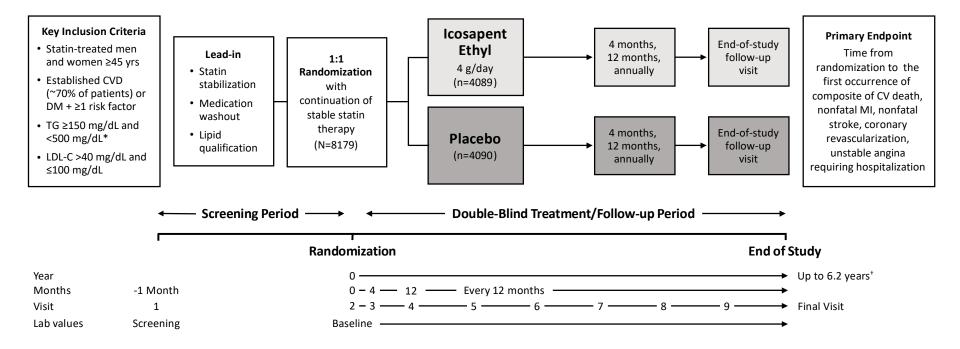

Marine Fish


Pacific Yew

Lero M, Sherratt SCR, Mason RP (2019)

Pure EPA Icosapent Ethyl Clinical Program

Efficacy and Safety



CV Outcomes

CHD=coronary heart disease; CV=cardiovascular; LDL-C=low-density lipoprotein cholesterol; TG=triglyceride. *Original protocol criteria specified a TG level of 150 to <500 mg/dL. A 2013 protocol amendment modified qualifying TG levels to ≥200 to <500 mg/dL.

1. Bays HE et al. Am J Cardiol. 2011;108(5):682-690; 2. Ballantyne CM et al. Am J Cardiol. 2012;110(7):984-992; 3. Bhatt DL et al. NEJM. 2019;380:11-22.

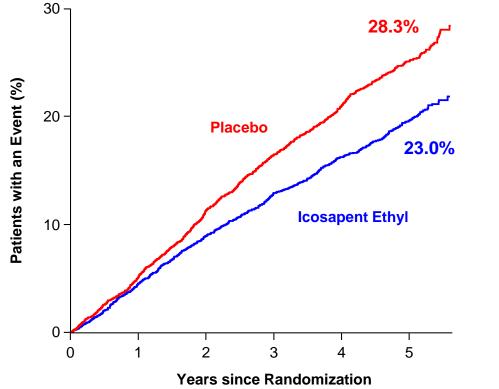
REDUCE-IT Design

* Due to the variability of triglycerides, a 10% allowance existed in the initial protocol, which permitted patients to be enrolled with qualifying triglycerides ≥135 mg/dL. Protocol amendment 1 (May 2013) changed the lower limit of acceptable triglycerides from 150 mg/dL to 200 mg/dL, with no variability allowance.

⁺ Median trial follow-up duration was 4.9 years (minimum 0.0, maximum 6.2 years).

Adapted with permission⁺ from Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. *Clin Cardiol.* 2017;40:138-148. REDUCE-IT ClinicalTrials.gov number, NCT01492361. [*https://creativecommons.org/licenses/by-nc/4.0/]

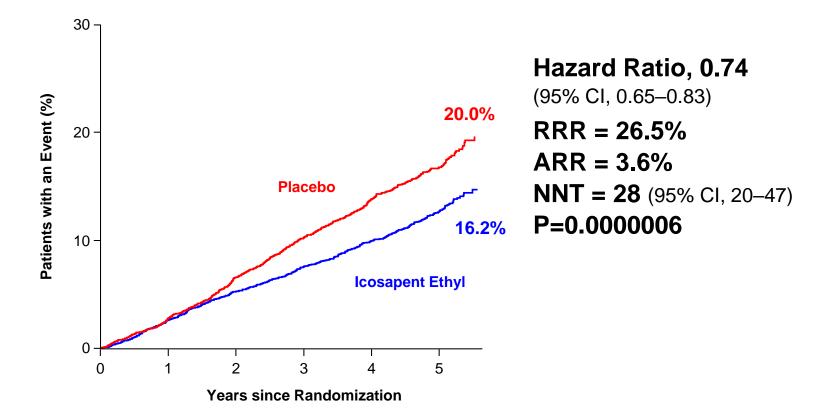
Key Baseline Characteristics


	Icosapent Ethyl (N=4089)	Placebo (N=4090)
Age (years), Median (Q1-Q3)	64.0 (57.0 - 69.0)	64.0 (57.0 - 69.0)
Female, n (%)	1162 (28.4%)	1195 (29.2%)
Non-White, n (%)	398 (9.7%)	401 (9.8%)
Westernized Region, n (%)	2906 (71.1%)	2905 (71.0%)
CV Risk Category, n (%)		
Secondary Prevention Cohort	2892 (70.7%)	2893 (70.7%)
Primary Prevention Cohort	1197 (29.3%)	1197 (29.3%)
Ezetimibe Use, n (%)	262 (6.4%)	262 (6.4%)
Statin Intensity, n (%)		
Low	254 (6.2%)	267 (6.5%)
Moderate	2533 (61.9%)	2575 (63.0%)
High	1290 (31.5%)	1226 (30.0%)
Type 2 Diabetes, n (%)	2367 (57.9%)	2363 (57.8%)
Triglycerides (mg/dL), Median (Q1-Q3)	216.5 (176.5 - 272.0)	216.0 (175.5 - 274.0)
HDL-C (mg/dL), Median (Q1-Q3)	40.0 (34.5 - 46.0)	40.0 (35.0 - 46.0)
LDL-C (mg/dL), Median (Q1-Q3)	74.0 (61.5 - 88.0)	76.0 (63.0 - 89.0)
Triglycerides Category		
<150 mg/dL	412 (10.1%)	429 (10.5%)
150 to <200 mg/dL	1193 (29.2%)	1191 (29.1%)
≥200 mg/dL	2481 (60.7%)	2469 (60.4%)

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2019; 380:11-22.

Key Medical Therapy

	Icosapent Ethyl (N=4089)	Placebo (N=4090)
Antiplatelet	3257 (79.7%)	3236 (79.1%)
One Antiplatelet	2416 (59.1%)	2408 (58.9%)
Two or More Antiplatelets	841 (20.6%)	828 (20.2%)
Anticoagulant	385 (9.4%)	390 (9.5%)
ACEi or ARB	3164 (77.4%)	3176 (77.7%)
Beta Blocker	2902 (71.0%)	2880 (70.4%)
Statin	4077 (99.7%)	4068 (99.5%)


Primary End Point: CV Death, MI, Stroke, Coronary Revasc, Unstable Angina

Hazard Ratio, 0.75 (95% Cl, 0.68–0.83) RRR = 24.8% ARR = 4.8% NNT = 21 (95% Cl, 15–33) P=0.0000001

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2019. Bhatt DL. AHA 2018, Chicago.

Key Secondary End Point: CV Death, MI, Stroke

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2019. Bhatt DL. AHA 2018, Chicago.

Primary End Point in Subgroups

End Point/Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl	Placebo	HR (95% CI)	Int P Val
		n/N (%)	n/N (%)		
Primary Composite End Point (ITT)		705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68-0.83)	
Subgroup					
Risk Category Secondary Prevention Cohort Primary Prevention Cohort		559/2892 (19.3%) 146/1197 (12.2%)	738/2893 (25.5%) 163/1197 (13.6%)	0.73 (0.65–0.81) 0.88 (0.70–1.10)	0.14
Region Western Eastern Asia Pacific		551/2906 (19.0%) 143/1053 (13.6%) 11/130 (8.5%)	713/2905 (24.5%) 167/1053 (15.9%) 21/132 (15.9%)	0.74 (0.66–0.83) 0.84 (0.67–1.05) 0.49 (0.24–1.02)	0.30
Ezetimibe Use No Yes		649/3827 (17.0%) 56/262 (21.4%)	834/3828 (21.8%) 67/262 (25.6%)	0.75 (0.67–0.83) 0.82 (0.57–1.16)	0.64
Sex Male Female	-	551/2927 (18.8%) 154/1162 (13.3%)	715/2895 (24.7%) 186/1195 (15.6%)	0.73 (0.65–0.82) 0.82 (0.66–1.01)	0.33
White vs Non-White White Non-White	_ <u>+</u>	646/3691 (17.5%) 59/398 (14.8%)	812/3688 (22.0%) 89/401 (22.2%)	0.77 (0.69–0.85) 0.60 (0.43–0.83)	0.18
Age Group <65 Years ≳65 Years	*	322/2232 (14.4%) 383/1857 (20.6%)	460/2184 (21.1%) 441/1906 (23.1%)	0.65 (0.56-0.75) 0.87 (0.76-1.00)	0.004
US vs Non-US US Non-US		281/1548 (18.2%) 424/2541 (16.7%)	394/1598 (24.7%) 507/2492 (20.3%)	0.69 (0.59–0.80) 0.80 (0.71–0.91)	0.14
Baseline Diabetes Diabetes No Diabetes	*	433/2394 (18.1%) 272/1695 (16.0%)	536/2393 (22.4%) 365/1694 (21.5%)	0.77 (0.68–0.87) 0.73 (0.62–0.85)	0.56
Baseline eGFR <60 mL/min/1.73m ² 60-<90 mL/min/1.73m ² ≥90 mL/min/1.73m ²	1	197/905 (21.8%) 380/2217 (17.1%) 128/963 (13.3%)	263/911 (28.9%) 468/2238 (20.9%) 170/939 (18.1%)	0.71 (0.59–0.85) 0.80 (0.70–0.92) 0.70 (0.56–0.89)	0.41
Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL	=	430/2481 (17.3%) 275/1605 (17.1%)	559/2469 (22.6%) 342/1620 (21.1%)	0.73 (0.64–0.83) 0.79 (0.67–0.93)	0.45
Baseline Triglycerides ≥150 vs <150 mg/dL Triglycerides ≥150 mg/dL Triglycerides <150 mg/dL		640/3674 (17.4%) 65/412 (15.8%)	811/3660 (22.2%) 90/429 (21.0%)	0.75 (0.68–0.83) 0.79 (0.57–1.09)	0.83
Baseline Triglycerides ≥200 and HDL-C ≤35 mg/dL Yes No		149/823 (18.1%) 554/3258 (17.0%)	214/794 (27.0%) 687/3293 (20.9%)	0.62 (0.51–0.77) 0.79 (0.71–0.88)	0.04
Baseline Statin Intensity High Moderate Low	-=	232/1290 (18.0%) 424/2533 (16.7%) 48/254 (18.9%)	310/1226 (25.3%) 543/2575 (21.1%) 45/267 (16.9%)	0.69 (0.58–0.82) 0.76 (0.67–0.86) 1.12 (0.74–1.69)	0.12
Baseline LDL-C (Derived) by Tertiles s67 mg/dL >67-s84 mg/dL >84 mg/dL	幸	244/1481 (16.5%) 248/1347 (18.4%) 213/1258 (16.9%)	302/1386 (21.8%) 307/1364 (22.5%) 292/1339 (21.8%)	0.72 (0.61–0.85) 0.81 (0.68–0.96) 0.74 (0.62–0.89)	0.62
Baseline hsCRP ≲2 vs >2 mg/L ≲2 mg/L >2 mg/L		288/1919 (15.0%) 417/2167 (19.2%)	407/1942 (21.0%) 494/2147 (23.0%)	0.68 (0.58–0.79) 0.81 (0.71–0.93)	0.07
s2 mg/L >2 mg/L 0.2	2 0.6 1.0 1.4 1.8 cosapent Ethyl Better Placebo Better				

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2019; 380:11-22.

Key Secondary End Point in Subgroups

End Point/Subgroup	Hazard Ratio (95% CI)	Icosapent Ethyl	Placebo	HR (95% CI)*	Int P Val
		n/N (%)	n/N (%)		
ey Secondary Composite Endpoint (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65-0.83)	
ubgroup					
Risk Category Secondary Prevention Cohort Primary Prevention Cohort	≝⊶	361/2892 (12.5%) 98/1197 (8.2%)	489/2893 (16.9%) 117/1197 (9.8%)	0.72 (0.63–0.82) 0.81 (0.62–1.06)	0.41
Region Western Eastern Asia Pacific		358/2906 (12.3%) 93/1053 (8.8%) 8/130 (6.2%)	473/2905 (16.3%) 117/1053 (11.1%) 16/132 (12.1%)	0.73 (0.64–0.84) 0.78 (0.59–1.02) 0.47 (0.20–1.10)	0.54
Ezetimibe Use No Yes	<u> </u>	426/3827 (11.1%) 33/262 (12.6%)	569/3828 (14.9%) 37/262 (14.1%)	0.73 (0.64–0.82) 0.87 (0.54–1.39)	0.46
Sex Male Female		353/2927 (12.1%) 106/1162 (9.1%)	474/2895 (16.4%) 132/1195 (11.0%)	0.72 (0.62–0.82) 0.80 (0.62–1.03)	0.44
White vs Non-White White Non-White	<u>+</u>	418/3691 (11.3%) 41/398 (10.3%)	538/3688 (14.6%) 68/401 (17.0%)	0.76 (0.67–0.86) 0.55 (0.38–0.82)	0.13
Age Group <65 Years ≳65 Years		200/2232 (9.0%) 259/1857 (13.9%)	290/2184 (13.3%) 316/1906 (16.6%)	0.65 (0.54–0.78) 0.82 (0.70–0.97)	0.06
US vs Non-US US Non-US	- -	187/1548 (12.1%) 272/2541 (10.7%)	266/1598 (16.6%) 340/2492 (13.6%)	0.69 (0.57–0.83) 0.77 (0.66–0.91)	0.38
Baseline Diabetes Diabetes No Diabetes	-=	286/2394 (11.9%) 173/1695 (10.2%)	391/2393 (16.3%) 215/1694 (12.7%)	0.70 (0.60-0.81) 0.80 (0.65-0.98)	0.29
Baseline eGFR <60 mL/min/1.73m ² 60-<90 mL/min/1.73m ² ≥90 mL/min/1.73m ²	主	152/905 (16.8%) 229/2217 (10.3%) 78/963 (8.1%)	205/911 (22.5%) 296/2238 (13.2%) 105/939 (11.2%)	0.71 (0.57–0.88) 0.77 (0.64–0.91) 0.70 (0.52–0.94)	0.77
Baseline Triglycerides ≥200 vs <200 mg/dL Triglycerides ≥200 mg/dL Triglycerides <200 mg/dL	*	290/2481 (11.7%) 169/1605 (10.5%)	371/2469 (15.0%) 235/1620 (14.5%)	0.75 (0.65–0.88) 0.71 (0.58–0.86)	0.62
Baseline Triglycerides ≥150 vs <150 mg/dL Triglycerides ≥150 mg/dL Triglycerides <150 mg/dL		421/3674 (11.5%) 38/412 (9.2%)	546/3660 (14.9%) 60/429 (14.0%)	0.74 (0.65–0.84) 0.66 (0.44–0.99)	0.68
Baseline Triglycerides ≥200 and HDL-C ≤35 mg/dL Yes No		101/823 (12.3%) 356/3258 (10.9%)	136/794 (17.1%) 470/3293 (14.3%)	0.68 (0.53–0.88) 0.75 (0.65–0.86)	0.50
Baseline Statin Intensity High Moderate Low	- <u>-</u> ,	151/1290 (11.7%) 270/2533 (10.7%) 37/254 (14.6%)	210/1226 (17.1%) 361/2575 (14.0%) 32/267 (12.0%)	0.66 (0.54–0.82) 0.74 (0.63–0.87) 1.20 (0.74–1.93)	0.10
Baseline LDL-C (Derived) by Tertiles ≲67 mg/dL >67 ≤84 mg/dL >84 mg/dL	圭	157/1481 (10.6%) 157/1347 (11.7%) 145/1258 (11.5%)	196/1386 (14.1%) 208/1364 (15.2%) 202/1339 (15.1%)	0.73 (0.59–0.90) 0.75 (0.61–0.93) 0.74 (0.60–0.91)	0.97
Baseline hsCRP ≤2 vs >2 mg/L ≤2 mg/L >2 mg/L	+	183/1919 (9.5%) 276/2167 (12.7%)	245/1942 (12.6%) 361/2147 (16.8%)	0.73 (0.61–0.89) 0.73 (0.63–0.86)	0.97
0.2	0.6 1.0 1.4 osapent Ethyl Better Placebo Better	276/2167 (12.7%) 1.8	301/2147 (10.8%)	u.73 (U.63–U.86)	

Prespecified Hierarchical Testing

Endpoint	Hazard Rat (95% Cl)		Placebo n/N (%)	Hazard Ratio (95% CI)	RRR	P-value
Primary Composite (ITT)	-	705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68–0.83)	25%▼	<0.001
Key Secondary Composite (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	26%▼	<0.001
Cardiovascular Death or Nonfatal Myocardial Infarction		392/4089 (9.6%)	507/4090 (12.4%)	0.75 (0.66–0.86)	25%▼	<0.001
Fatal or Nonfatal Myocardial Infarction		250/4089 (6.1%)	355/4090 (8.7%)	0.69 (0.58–0.81)	31%▼	<0.001
Urgent or Emergent Revascularization		216/4089 (5.3%)	321/4090 (7.8%)	0.65 (0.55–0.78)	35%▼	<0.001
Cardiovascular Death		174/4089 (4.3%)	213/4090 (5.2%)	0.80 (0.66–0.98)	20%▼	0.03
Hospitalization for Unstable Angina		108/4089 (2.6%)	157/4090 (3.8%)	0.68 (0.53–0.87)	32%▼	0.002
Fatal or Nonfatal Stroke		98/4089 (2.4%)	134/4090 (3.3%)	0.72 (0.55–0.93)	28%▼	0.01
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke	-=-	549/4089 (13.4%)	690/4090 (16.9%)	0.77 (0.69–0.86)	23%▼	<0.001
Total Mortality		274/4089 (6.7%)	310/4090 (7.6%)	0.87 (0.74–1.02)	13%▼	0.09
	0.4 1.0	1.4		RRR denotes re	lative risk	reduction
Bhatt DL, AHA 2018, Chicago, ^{Icosapent}	t Ethyl Better	Placebo Better	Bhatt DL. Ste	a PG. Miller M. et al. A	l Enal J	Med. 201

Bhatt DL. AHA 2018, Chicago.

REDUCE-IT Tertiary Endpoints: Cardiac Arrest, Sudden Cardiac Death, Arrhythmias

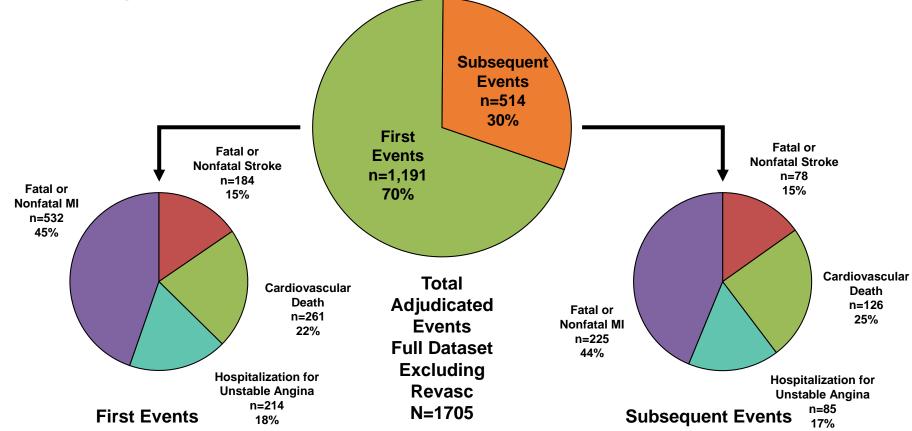
Endpoint	Icosapent Ethyl n/N (%)	Placebo n/N (%)	Hazard Ratio (95% CI)
Cardiac Arrest	22/4089 (0.5%)	42/4090 (1.0%)	0.52 (0.31, 0.86)
Sudden Cardiac Death	61/4089 (1.5%)	87/4090 (2.1%)	0.69 (0.50, 0.96)
Cardiac Arrhythmias Requiring Hospitalization of \ge 24 Hours	188/4089 (4.6%)	154/4090 (3.8%)	1.21 (0.97, 1.49)

reduce-it

Treatment-Emergent Adverse Events

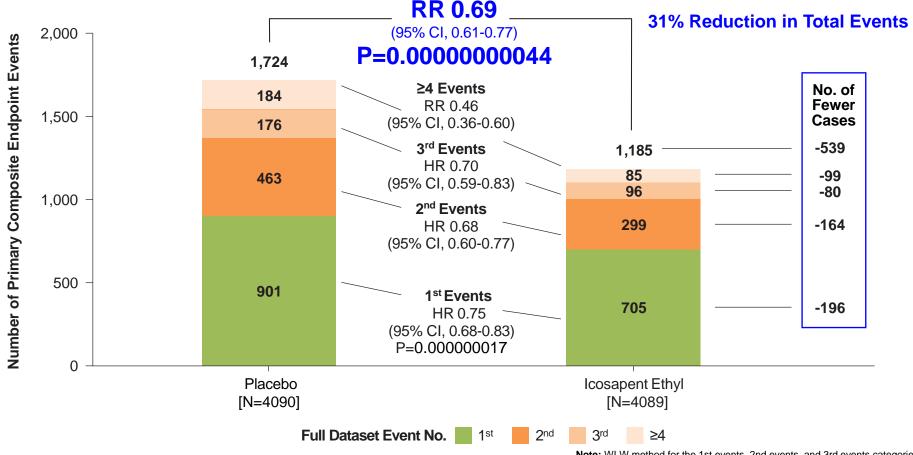
	lcosapent Ethyl (N=4089)	Placebo (N=4090)	P-value
Subjects with at Least One TEAE, n (%)	3343 (81.8%)	3326 (81.3%)	0.63
Serious TEAE	1252 (30.6%)	1254 (30.7%)	0.98
TEAE Leading to Withdrawal of Study Drug	321 (7.9%)	335 (8.2%)	0.60
Serious TEAE Leading to Withdrawal of Study Drug	88 (2.2%)	88 (2.2%)	1.00
Serious TEAE Leading to Death	94 (2.3%)	102 (2.5%)	0.61

Treatment-Emergent Adverse Event of Interest: Serious Bleeding


	Icosapent Ethyl (N=4089)	Placebo (N=4090)	P-value		
Bleeding related disorders	111 (2.7%)	85 (2.1%)	0.06		
Gastrointestinal bleeding	62 (1.5%)	47 (1.1%)	0.15		
Central nervous system bleeding	14 (0.3%)	10 (0.2%)	0.42		
Other bleeding	41 (1.0%)	30 (0.7%)	0.19		
 No fatal bleeding events in either group Adjudicated hemorrhagic stroke - no significant difference between treatments (13 icosapent ethyl versus 10 placebo; P=0.55) 					

Adjudicated Events: Hospitalization for Atrial Fibrillation or Atrial Flutter

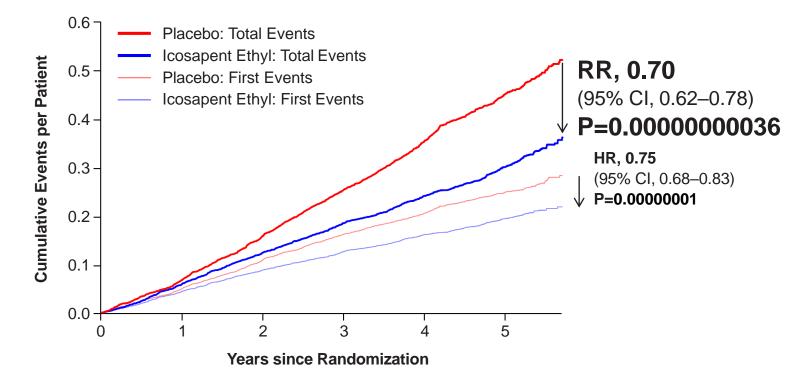
Primary System Organ Class Preferred Term	lcosapent Ethyl (N=4089)	Placebo (N=4090)	P-value
Positively Adjudicated Atrial Fibrillation/Flutter ^[1]	127 (3.1%)	84 (2.1%)	0.004


Note: Percentages are based on the number of subjects randomized to each treatment group in the Safety population (N). All adverse events are coded using the Medical Dictionary for Regulatory Activities (MedDRA Version 20.1). [1] Includes positively adjudicated Atrial Fibrillation/Flutter clinical events by the Clinical Endpoint Committee (CEC). P value was based on stratified log-rank test.

Proportions of First and Subsequent Events Excluding Revascularization

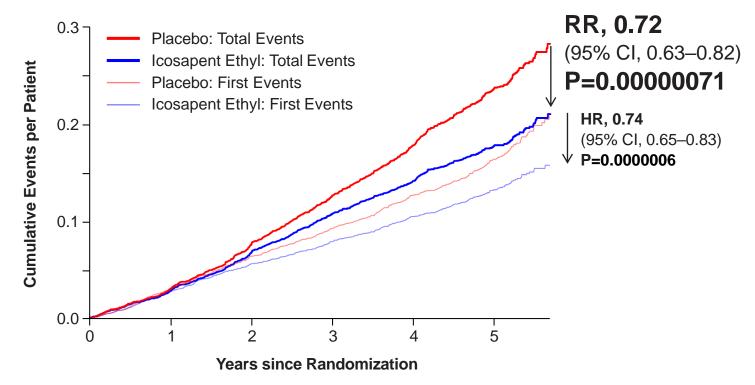
Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019;73:2791-2802.

First and Subsequent Events – Full Data



Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019;73:2791-2802.

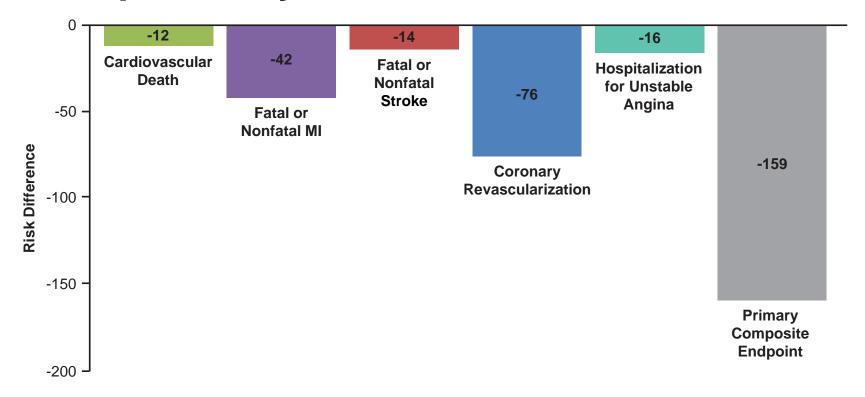
Note: WLW method for the 1st events, 2nd events, and 3rd events categories; Negative binomial model for \geq 4th events and overall treatment comparison.


Total (First and Subsequent) Events Primary: CV Death, MI, Stroke, Coronary Revasc, Unstable Angina

Primary Composite Endpoint

Total (First and Subsequent) Events Key Secondary: CV Death, MI, Stroke

Key Secondary Composite Endpoint


Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019;73:2791-2802.

Total Primary and Key Secondary Composite Endpoint Events and First, Second, and Third Occurrences (Full Dataset, Adjusted)

Endpoint/Model	Adjusted Rate/Hazard Rati	o (95% CI)	Adjusted P-value
Primary Composite Endpoint			
Negative binomial		0.69 (0.61, 0.77)	4.4 x 10 ⁻¹⁰
Andersen-Gill (I)	—	0.68 (0.63, 0.74)	3.0 x 10 ⁻²²
Andersen-Gill (II)		0.68 (0.61, 0.76)	3.4 x 10 ⁻¹¹
Modified WLW			
First event		0.75 (0.68, 0.83)	1.7 x 10 ⁻⁸
Second event		0.68 (0.60, 0.78)	3.1 x 10 ⁻⁹
Third event		0.70 (0.60, 0.83)	2.1 x 10 ⁻⁵
Key Secondary Composite Endpoint			
Negative binomial		0.71 (0.62, 0.82)	1.2 x 10 ⁻⁶
Andersen-Gill (I)		0.71 (0.63, 0.79)	1.7 x 10 ⁻¹⁰
Andersen-Gill (II)		0.71 (0.62, 0.81)	3.4 x 10 ⁻⁷
Modified WLW			
First event	—= — — —	0.74 (0.65, 0.83)	7.1 x 10 ⁻⁷
Second event		0.75 (0.63, 0.89)	0.0011
Third event		0.79 (0.65, 0.96)	0.0171
0.5	0.8 1.0 1.2		
•	Icosapent Ethyl Better Placebo Better		

Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019;73:2791-2802.

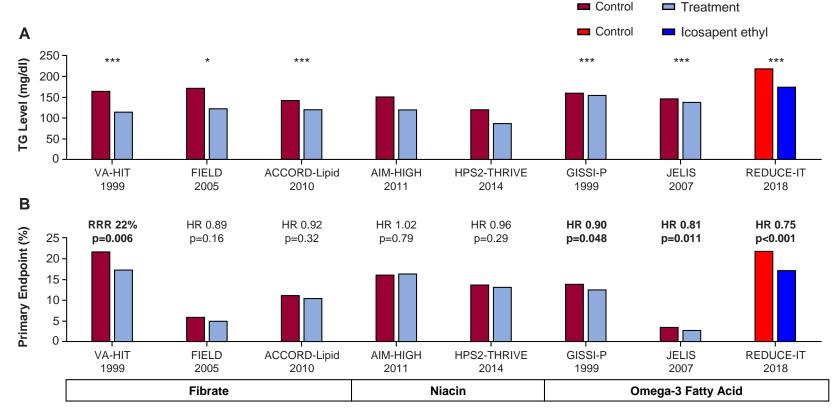
For Every 1000 Patients Treated with Icosapent Ethyl for 5 Years:

Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019;73:2791-2802.

Primary Composite Endpoint: Total Endpoint Events by Baseline TG Tertiles

TOTAL EVENTS – Primary Composite Endpoint/Subgroup	lcosapent Ethyl	Placebo	RR (95% CI)	P-value
	Rate per 1000 Patient Years	Rate per 1000 Patient Years		
Primary Composite Endpoint (ITT)	61.1	88.8	0.70 (0.62–0.78)	<0.0001
Baseline Triglycerides by Tertiles*				
≥81 to ≤190 mg/dL	56.4	74.5	0.74 (0.61–0.90)	0.0025
>190 to ≤250 mg/dL	63.2	86.8	0.77 (0.63–0.95)	0.0120
>250 to ≤1401 mg/dL	64.4	107.4	0.60 (0.50–0.73)	<0.0001
0.2 0.6 1.0 1.4 1.8 Icosapent Ethyl Placebo Better Better			*P (interacti	on) = 0.17

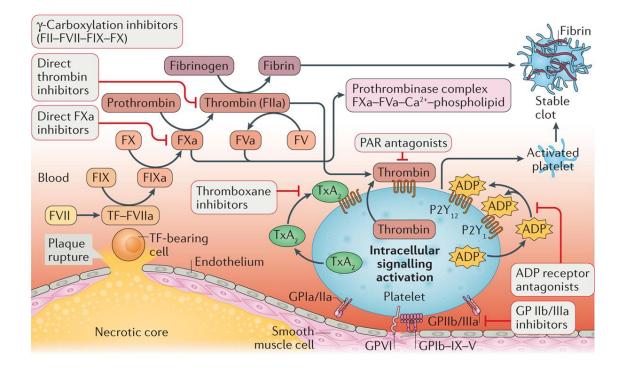
Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019;74:1159-


Total Ischemic Events by Baseline TG and Achieved TG at 1 Year

		Total Primary Composite Endpoint Total Key		Total Key Secon Endp	
	n (%) [†] (N=8179)	RR (95% CI)	Interaction p-value	RR (95% CI)	Interaction p-value
Baseline triglycerides			0.26		0.89
≥200 mg/dl	4950 (60.5)	0.66 (0.57-0.77)		0.71 (0.60-0.84)	
<200 mg/dl	3225 (39.4)	0.76 (0.63-0.91)		0.72 (0.58-0.90)	
Baseline triglycerides			0.94		0.88
≥150 mg/dl	7334 (89.7)	0.70 (0.62-0.78)		0.72 (0.62-0.82)	
<150 mg/dl	841 (10.3)	0.71 (0.49-1.03)		0.69 (0.44-1.08)	
Baseline triglycerides tertiles			0.17		0.18
≥81 to ≤190 mg/dl	2759 (33.7)	0.74 (0.61-0.90)		0.68 (0.54-0.87)	
>190 to ≤250 mg/dl	2696 (33.0)	0.77 (0.63-0.95)		0.85 (0.67-1.08)	
>250 to ≤1401 mg/dl	2720 (33.3)	0.60 (0.50-0.73)		0.63 (0.51-0.78)	
Achieved triglycerides at 1 year*	(N=4089)		-		-
lcosapent ethyl TG ≥150 mg/dl vs Placebo	2364 (57.8)	0.66 (0.57-0.75)		0.63 (0.54-0.74)	
lcosapent ethyl TG <150 mg/dl vs Placebo	- 1325 (32.4)	0.62 (0.53-0.74)		0.65 (0.53-0.78)	

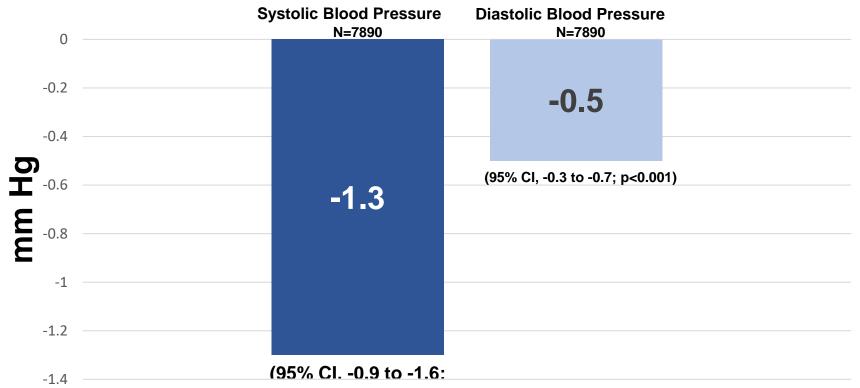
* Statistical comparisons of each icosapent ethyl triglyceride group (>150 mg/dl or <150 mg/dl at 1 year) against the entire placebo group; no interaction p values are generated. *Number and percentage of patients in each baseline TG subgroup across combined icosapent ethyl and placebo groups; and number and percentage of patients in each 1-year TG group (>150 mg/dl or <150 mg/dl) for icosapent ethyl.

Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019: 1845-50. In press.


Key Triglyceride-Lowering Trials and Effects on CV Outcomes

Patel PN, Patel SM, Bhatt DL. Curr Opin Cardiol. 2019;34 (in press).

*** P<0.001; * P<0.05


Antiplatelet and Anticoagulant Pathways

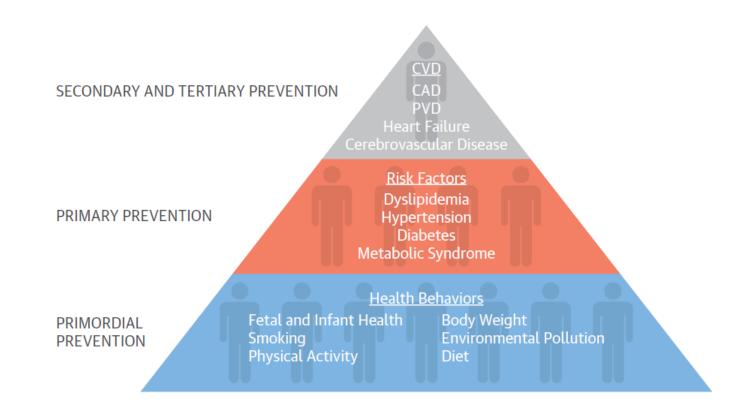
Nature Reviews | Cardiology

Reproduced with permission from Bhatt DL. Advances in atherosclerosis, atrial fibrillation, and valvular disease. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2017.212. 2018.

Placebo-corrected Reductions in Blood Pressure from Baseline with Icosapent Ethyl 4g/day

Prespecified exploratory analysis with no adjustment for multiple comparisons. Repeated-measurements analysis of change from baseline blood pressure over time by mixed-effects model. ITT population. Icosapent ethyl n=4089, Placebo n=4091. Maximum number of observations per patient = 6.

Bhatt DL, Steg PG, Miller M. N Engl J Med. 2019;380:1678.


Potential Benefits of EPA

Effects of EPA on Plaque Progression

	Endothelial Dysfunction/ Oxidative Stress	Inflammation/ Plaque Growth	Unstable Plaque
Increase	Endothelial function Nitric oxide bioavailablity	EPA/AA ratio IL-10	Fibrous cap thickness Lumen diameter Plaque stability
Decrease	Cholesterol crystalline domains Ox-LDL RLP-C Adhesion of monocytes Macrophages Foam cells	IL-6 ICAM-1 hsCRP Lp-PLA ₂ MMPs	Plaque volume Arterial stiffness Plaque vulnerability Thrombosis Platelet activation

Adapted with permission* from Ganda OP, Bhatt DL, Mason RP, Miller M, Boden WE. Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management. *J Am Coll Cardiol.* 2018;72:330-343. [*https://creativecommons.org/licenses.org/by-nc/4.0/]

Pyramid of Risk

Hong KN, Fuster V, Rosenson RS, Rosendorff C, Bhatt DL. JACC 2017. Permission pending.

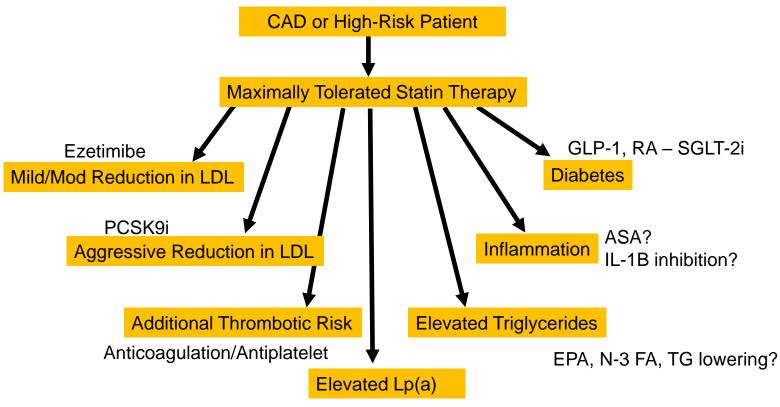
BRIGHAM AND WOMEN'S HOSPITAL

Heart & Vascular Center

Thank You!

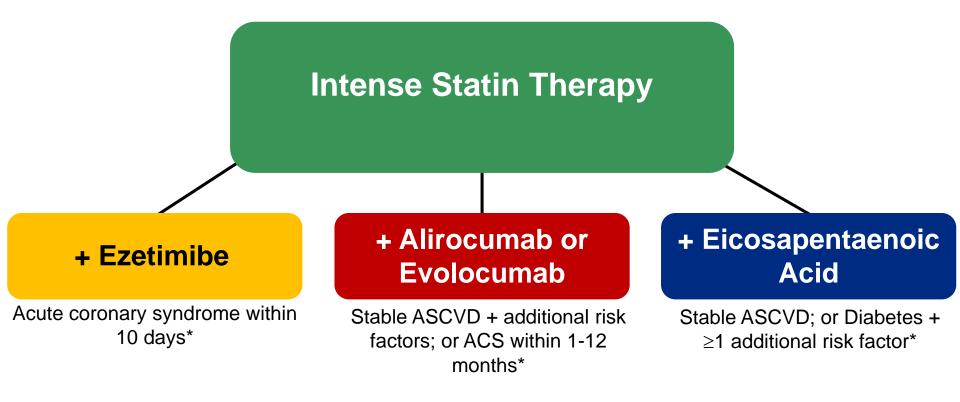
Deepak L. Bhatt, MD, MPH Executive Director, Interventional Cardiovascular Programs, BWH Heart & Vascular Center; Professor of Medicine, Harvard Medical School Email: dlbhattmd@post.harvard.edu Twitter: @DLBhattMD

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL


www.brighamandwomens.org/hear

Personalizing Management of ASCVD Risk Factors

ERIN MICHOS, MD, MHS



Pharmacologic Approaches to Managing Residual CV Risk

Niacin, PCSK9i, antisense?

Statin Therapy Adjuncts Proven to Reduce ASCVD

*Major inclusion criteria for each trial.

ACS=acute coronary syndrome; ASCVD=atherosclerotic cardiovascular disease. *After* Orringer CE. *Trends in Cardiovasc Med.* 2019. May 4. [Epub ahead of print]

American Diabetes Association (ADA) Issues Updates to the 2019 Standards of Medical Care in Diabetes

Section 10 – Cardiovascular Disease and Risk Management: Lipid Management¹

- Treatment of Other Lipoprotein Fractions or Targets
 - In patients with ASCVD or other cardiac risk factors on a statin with controlled LDL-C, but elevated triglycerides (135-499), the addition of icosapent ethyl should be considered to reduce cardiovascular risk. A
 - "It should be noted that data are lacking with other omega-3 fatty acids, and results of the REDUCE-IT trial should not be extrapolated to other products."
- Other Combination Therapy
 - Combination therapy (statin/fibrate) has not been shown to improve atherosclerotic cardiovascular disease outcomes and is generally not recommended. A
 - Combination therapy (statin/niacin) has not been shown to provide additional cardiovascular benefit above statin therapy alone, may increase the risk of stroke with additional side effects, and is generally not recommended. A

1. American Diabetes Association. 10. Cardiovascular disease and risk management: Standards of Medical Care in Diabetes—2019 [web annotation]. Diabetes Care 2019;42(Suppl.1):S103–S123. https://hyp.is/JHhz_ICrEembFJ9LIVBZIw/care.diabetesjournals.org/content/42/Supplement_1/S103. Updated March 27, 2019. Accessed March 28, 2019.

New Recommendations for Drug Treatment of Patients with Hypertriglyceridemia: European Society of Cardiology (ESC) and National Lipid Association (NLA)

ESC

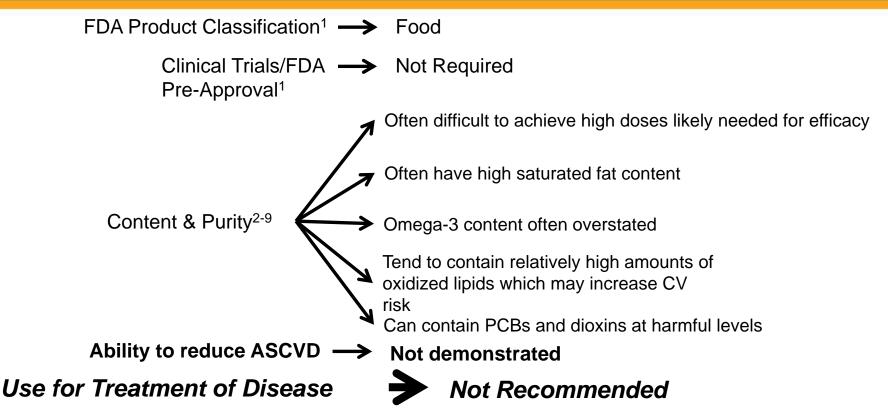
Recommendations	C lass ^a	Level ^b
Statin treatment is recommended as the first drug of choice to reduce CVD risk in high-risk individuals with hypertriglyceridaemia [TG lev- els >2.3 mmol/L (>200 mg/dL1]. ³⁵⁵	I	В
In high-risk (or above) patients with TG levels between 1.5–5.6 mmol/L (135–499 mg/dL) despite statin treatment, n-3 PUFAs (icosapent ethyl 2×2 g/day) should be considered in combination with a statin. ¹⁹⁴	lla	В
In primary prevention patients who are at LDL-C goal with TG levels >2.3 mmol/L (>200 mg/dL), fenofibrate or bezafibrate may be considered in combination with statins. ^{305–307,356}	Шь	В
In high-risk patients who are at LDL-C goal with TG levels >2.3 mmol/L (>200 mg/dL), fenofibrate or bezafibrate may be considered in combination with statins. ^{305-307,356}	Ш	с

CVD = cardiovascular disease; LDL-C = low-density lipoprotein cholesterol; PUFA = polyunsaturated fatty acids; TG = triglyceride. a=Class of recommendation; b=Level of evidence.

NLA

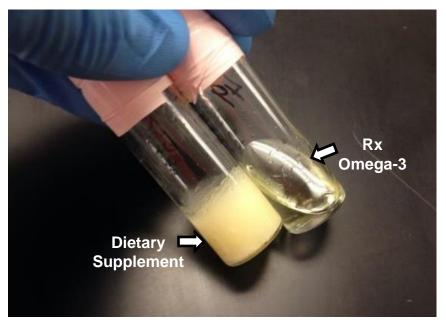
NLA Position on the Use of Icosapent Ethyl in High and Very-high-risk Patients

 For patients 45 years of age or older with clinical ASCVD, or 50 years of age or older with type 2 diabetes requiring medication and ≥1 additional risk factor*, and fasting triglycerides 135-499 mg/dL on maximally tolerated statin, with or without ezetimibe, treatment with icosapent ethyl is recommended for ASCVD risk reduction. (I B-R)

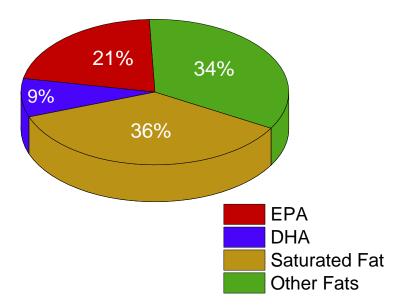

CLASS I (STRONG)	Benefit >>> Risk
Suggested phrases for writing recomm Is recommended Is indicated/useful/effective/bene	
EVEL B-R	(Randomized)
 Moderate-quality evidence‡ from 1 Meta-analyses of moderate-quality 	

★ • Age: men ≥55 years and women ≥65 years

- Cigarette smoker or stopped smoking within 3 months
- Hypertension (≥140 mmHg systolic OR ≥90 mmHg diastolic) or on antihypertensive medication
- HDL-C ≤40 mg/dL for men or ≤50 mg/dL for women
- hs-CRP >3.0 mg/L
- Renal dysfunction: Creatinine clearance >30 and <60 mL/min
- Retinopathy
- Micro- or macro-albuminuria
- ABI <0.9 without symptoms of intermittent claudication


https://www.lipid.org/nla/nla-position-use-icosapent-ethyl-high-and-very-high-riskpatients

Dietary Supplement Fish Oil: <u>Not</u> Useful for ASCVD Prevention



1. US Food and Drug Administration. www.fda.gov/Food/DietarySupplements/default.htm. Updated April 4, 2016. Accessed Nov. 4, 2018. 2. Hilleman D and Smer A. *Manag Care*. 2016;25:46-52. 3. Mason RP and Sherratt SCR. *Biochem Biophys Res Commun*. 2017;483:425-9. 4. Albert BB et al. *Sci Rep*. 2015;5:7928. 5. Kleiner AC et al. *J Sci Food Agric*. 2015;95:1260-7. 6. Ritter JC et al. *J Sci Food Agric*. 2013:93:1935-9. 7. Jackowski SA et al. *J Nutr Sci*. 2015;4:e30. 8. Rundblad A et al. *Br J Nutr*. 2017;117:1291-8. 9. European Medicines Agency, 2018: 712678.

Fatty Acid Content of Leading U.S. Fish Oil Supplement

Saturated fatty acid content in fish oil supplement results in solid mass following isolation

Mason RP, Sherratt SCR. Biochem Biophys Res Commun. 2017;483:425-9.

Besides the Other Issues with Dietary Supplements, You Need Huge Amounts to = 4g Rx EPA

Icosapent ethyl

EPA Dietary Supplement from label

Krill oil from label

Conclusions

- After a long drought, a plethora of clinical studies has provided evidence for additional pharmacologic avenues to reduce CVD risk in statin-treated patients
- Cardio-protective agents should be preferred for diabetes management
- Control of coagulation and inflammation still needs to be positioned for wider scopes in CVD risk reduction
- The value of additional LDL lowering is proven, but use of EPA for subjects with elevated TG produces even larger CV benefits

Panel Discussion and Q&A

ALL FACULTY

CASE: 69-YO AFRICAN AMERICAN WOMAN WITH NO PRIOR CHD EVENTS, TYPE 2 DIABETES, WITH HTG

Erin Michos Deepak Bhatt

Case: 69-yo African American Woman with *No* Prior CVD Events, Post-Menopausal, Type 2 Diabetes, w/moderate HTG & HBP (treated)

Meds:

HCTZ 25 mg/d; atorvastatin 40 mg/d

<u>Exam:</u>

BMI=31 kg/m², BP=126/84 mm Hg, Waist=38", Non-smoker

Labs:

Fasting glucose	115 mg/dL
A1c	6.2%
ТС	201 mg/dL
TG	320 mg/dL
HDL-C	38 mg/dL
LDL-C	98 mg/dL
Non-HDL-C	163 mg/dL

What would you prescribe?

- A. Increase atorvastatin dose to 80 mg/dL
- B. Ezetimibe
- C. PCSK9 inhibitor
- D. Dietary-supplement fish-oil
- E. Icosapent ethyl (pure EPA) 2g bid
- F. Fibrate

Closing Comments DEEPAK L. BHATT, MD, MPH, CHAIR

Learning Assessment 1

What does the 2018 ACC/AHA Guideline on Blood Cholesterol Management algorithm recommend for a 69 y/o man with clinical ASCVD?

- A. Put patient on low-intensity statin therapy and healthy lifestyle
- B. Put patient on moderate-intensity statin therapy
- C. Put patient on high-intensity statin therapy
- D. Treat to obtain an LDL-C reduction of 25%

Learning Assessment 2

You have a patient with clinical ASCVD who has a TG level of 212 mg/dL and an LDL-C of 69 mg/dL. Which of the following should you recommend?

- A. Fibrate (eg, fenofibrate)
- B. Nicotinic acid (eg, niacin)
- C. Prescription EPA
- D. Omega-3 dietary supplement
- E. Nothing

Learning Assessment 3

Compared with placebo in REDUCE-IT, pure eicosapentaenoic acid (EPA) 4 g/day reduced the primary endpoint (5-point MACE) by

- A. 15%
- B. 25%
- C. 50%
- D. No difference in events

Access slides online

- Faculty slides are available here: medtelligence.net/sept25
- Scroll to the "Related" section and click on "Syllabus"

Online CME credit

- All attendees will receive an email with a link to the evaluation form
- Once you complete the online evaluation form, you will receive an email with a link to download your CME certificate

Adjourn DEEPAK L. BHATT, MD, MPH, *CHAIR*

