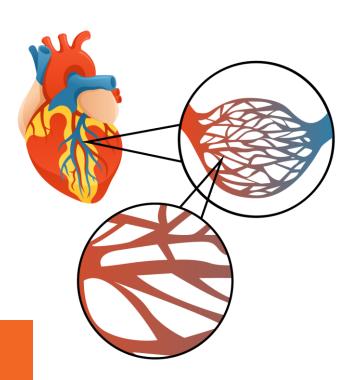
Advancing Cell Therapies for Coronary Microvascular Dysfunction: Experts Roundtable

Program Overview


Michael Gibson, MD (Co-Chair) &
Peter H. Stone, MD (Co-Chair)

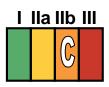
Stable Angina: State of the Art

Professor of Medicine, Brigham and Women's Hospital Heart & Vascular Center Professor of Medicine, Harvard Medical School Boston, MA

Faculty Disclosure

Peter H. Stone, MD

RESEARCH SUPPORT: NIH, AstraZeneca, St. Jude Medical, Infraredx


Guideline Based β-Blocker Therapy Secondary Prevention

 β -blocker therapy should be started and continued for 3 years in all patients with normal LV function after MI or ACS.

β-blocker therapy should be used in all patients with LVEF ≤40% with heart failure or prior MI, unless contraindicated. (Documented benefit with carvedilol, metoprolol succinate, or bisoprolol)

 β -blockers may be considered as chronic therapy for all other patients with coronary or other vascular disease.

β-Blockers for Secondary Prevention of CV Disease

Meta-Analysis of Selective and Non-Selective β-Blockers 33 Trials, 34,622 Patients

~ 20-30% reduction in mortality and vascular events

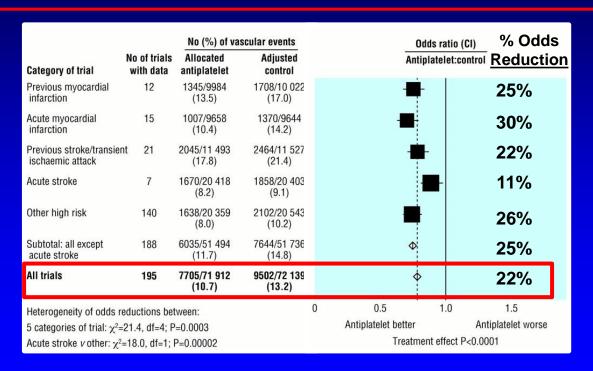
Group of Pts: Outcome	β1 Blockers Relative Risk (95% CI) β1+2 Blockers Relative Risk (95% CI)		
ACS: Total mortality	0.84 (0.67-1.05)	0.72 (0.63-0.81)	
ACS: Vascular Events	0.68 (0.42-1.11)	0.74 (0.66-0.84)	
Heart Failure: Total mortality	0.75 (0.66-0.85)	0.74 (0.56-0.96)	
Heart Failure: Vascular Events	1.34 (0.82-2.18)	0.79 (0.61-1.03)	

Guideline-Based Antiplatelet Therapy Secondary Prevention

Aspirin 75 to 162 mg daily indefinitely.

<u>Clopidogrel</u> is reasonable when aspirin is contraindicated.

Aspirin 75 to 162 mg daily and clopidogrel 75 mg daily might be reasonable in certain high-risk patients with SIHD.

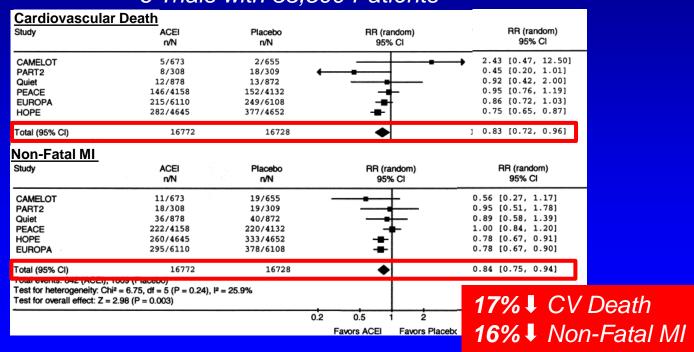


Dipyridamole is not recommended as antiplatelet therapy.


Benefit of Antiplatelet Therapy for Secondary Prevention of CV Disease (non-fatal MI, non-fatal stroke, vascular death)

Guideline-Based Renin-Angiotensin-Aldosterone Blocker Therapy Secondary Prevention

ACE inhibitor (or ARB if ACEI intolerant) should be prescribed in all patients with SIHD who also have hypertension, diabetes mellitus, LVEF ≤40%, or CKD, unless contraindicated.


ACE inhibitor (or **ARB** if ACEI intolerant) is reasonable in patients with both SIHD and other vascular disease (vascular protection).

Benefit of ACEI for Secondary Prevention of CV Disease

Meta-Analysis of RCTs of Patients with <u>CAD and Preserved LVEF</u> 6 Trials with 33,500 Patients

(Al-Mallah, et al. JACC 2006;47:1576)

Treatment of Symptoms (Angina):

Determinants of Myocardial O₂ Supply:Demand Balance

O₂ Demand

- Heart Rate
- Contractility
- Ventricular Wall Tension
 - Preload
 - Afterload

O₂ Supply

- Diastolic blood flow
- Resistances
 - Regulation
 - Metabolic control
 - Endothelial function
 - Myogenic/ extravascular compression

Guideline-Based Anti-Ischemic Medications *for Angina*

β-blockers should be prescribed as initial therapy.

Ca++-channel blockers or long-acting nitrates should be prescribed when β-blockers are contraindicated or cause unacceptable side effects

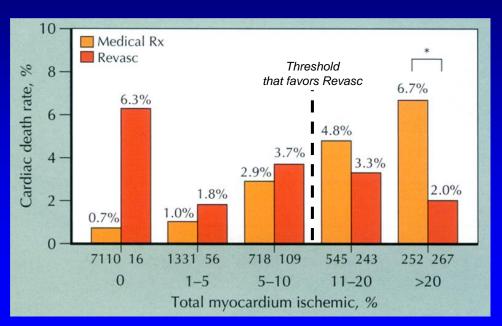
Ca⁺⁺-channel blockers or long-acting nitrates, in combination with β -blockers, should be prescribed when initial treatment with β -blockers is unsuccessful.

Guideline-Based Anti-Ischemic Medications for Angina (cont.)

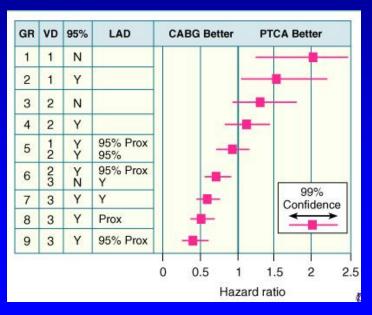
Sublingual NTG or spray for immediate relief of angina.

Long-acting <u>verapamil or diltiazem</u> instead of a β -blocker as initial therapy is reasonable.

Ranolazine can be useful as a substitute for β -blockers if initial treatment with β -blockers leads to unacceptable side effects, is ineffective or is contraindicated.

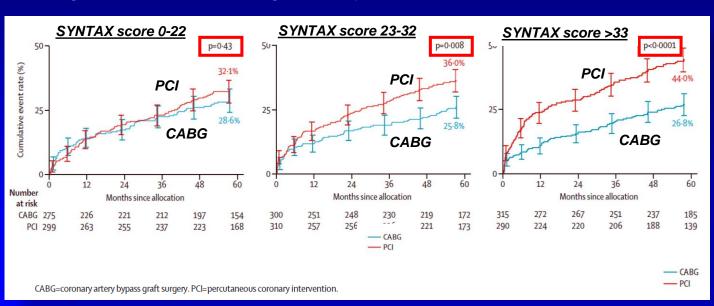

Ranolazine in combination with β -blockers can be useful when initial treatment with β -blockers is not successful.

Benefit of Medical vs Revascularization Therapy Based on Amount of Ischemic Myocardium


10,627 consecutive patients, myocardial stress perfusion imaging (exercise or adenosine), with followup 1.9±0.6 years

(Hachamovitch, et al. Circulation 2003;107:2900)

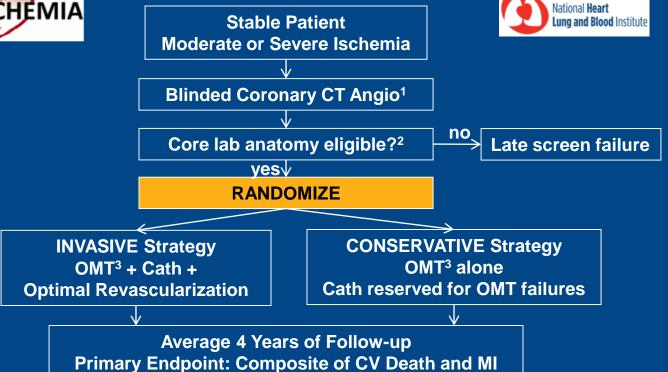
5-Year Survival Based on Revascularization by CABG vs PTCA


Least severe CAD, survival better with PTCA, Intermediate risk, no difference More severe CAD, survival better with CABG

(Jones, et al. *J Thorac CV Surg* 1996;111:1013.)

CABG vs PCI: SYNTAX Overall Cohort

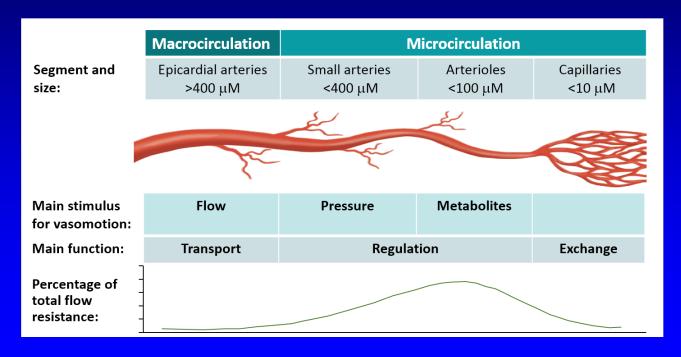
Highest-risk patients generally do better with CABG vs PCI



Revascularization of Stable CAD 2012 Revascularization Indications in Stable Angina

FOR PROGNOSIS				
SUBSET OF CAD BY ANATOMY	CLASS	LEVE L		
Left main >50%	_	Α		
Any proximal LAD >50%	_	Α		
2VD or 3VD with impaired LV function	_	В		
Proven large area of ischemia (>10% LV)	_	В		
Single remaining vessel >50% stenosis	-	С		
1VD without proximal LAD and without >10% ischemia	Ш	A		

FOR <u>SYMPTOMS</u>					
SUBSET OF CAD BY ANATOMY	CLASS	LEVEL			
Any stenosis >50% with <u>limiting angina</u> or angina equivalent, unresponsive to GDMT	_	A			
Dyspnea/CHF and >10% LV ischemia/viability supplied by >50% stenotic artery	lla	В			
No limiting symptoms with GDMT	Ш	С			


¹CCTA will be performed in all patients with eGFR ≥60 mL/min

²Exclude patients with LM disease or no obstructive disease

³OMT=Optimal medical therapy

Coronary Macro- and Micro-circulation

New and Evolving Understanding of Inter-relationships of <u>Macrocirculation</u> (Epicardial) and <u>Microcirculation</u> (Microvascular)

Microvascular and Epicardial Endothelial Function Results (n=65 pts w Stable CAD)

Definitions:

<u>Microvascular</u> endothelial dysfcn: max% <u>increase CBF</u> <50% by ACh <u>Epicardial</u> endothelial dysfcn: <u>decrease lumen diameter</u> >20% by ACh

		Epicardial Endothelial Function		
		<u>Normal</u> (48)	Abnormal (17)	
Microvascular Endothelial Function	<u>Normal</u> (32)	26	0	
	Abnormal (39)	22	17	

No patient with <u>normal microvascular</u> endothelial function had abnormal epicardial endothelial function

Of patients with <u>abnormal microvascular</u> endothelial function: 56% had abnormal epicardial endothelial function and 44% had normal epicardial endothelial function

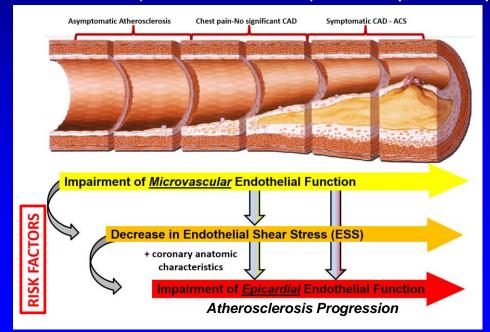
(Siasos G, et al. JACC 2018;71:2092-2102)

Continuum of Endothelial Dysfunction from Microvascular to Macrovascular/Plaque Development

Among Patients with <u>Microvascular</u> Endothelial Dysfunction: (n=39; defined as <u>lack of increase in coronary blood flow to ACh</u>)

Characteristic	Normal	Abnormal	P value
Concomitant Epicardial Endothelial Dysfcn (∆ coro diam after acetylcholine infus)	-3.02 ± 7.45	-14.73 ±26.36	0.01
Blood Flow in Epicardial Artery			
Low flow (Pro-atherogenic, Lowest ESS, Pa)	0.72 ± 0.32	0.54 ±0.25	0.01
Plaque Characteristics			
Plaque Area (mm²)	2.72 ± 1.74	3.78 ±2.34	<0.0001
Plaque Burden (%)	21.33 ± 9.72	26.43 ±12.59	<0.0001
Plaque Thickness (mm)	0.28 ± 0.18	0.39 ±0.24	<0.001

Worse <u>epicardial</u> endothelial dysfunction


Lower flow (shear stress) in epicardial arteries

More abnormal epicardial plaque features:

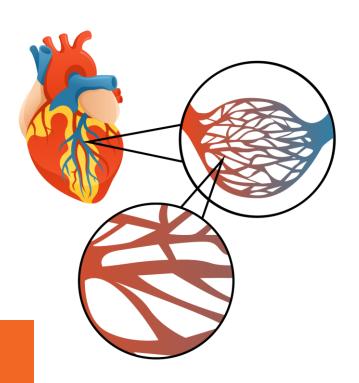
- plaque area
- hplaque burden
- plaque thickness

Continuous Natural History of Coronary Atherosclerosis: Opportunities for Therapeutic Intervention

CAD is an evolving process that progresses from microvascular to epicardial endothelial dysfunction over time, with mechanistic contributions by Low blood flow (low shear stress) at multiple time points

(Siasos G, et al. JACC 2018; 71:2092-2102)

Stable Ischemic Heart Disease: State of the Art


Summary and Conclusions

- Goals of management strategy includes strategies to:
 - modify disease (secondary prevention: statins, BP control, Anti-plt Rx, ACEI/ARBs) and,
 - improve quality of life (anti-anginal Rx)
- Revascularization strategies include <u>PCI</u> for less severe ischemic jeopardy, and <u>CABG</u> for highest risk ischemic jeopardy (ISCHEMIA trial may change that!)
- New appreciation of <u>continuum of phenotypic atherosclerosis</u> <u>process</u> from microvascular to macrovascular manifestations
 - Opportunities (and Needs) for therapeutic intervention!

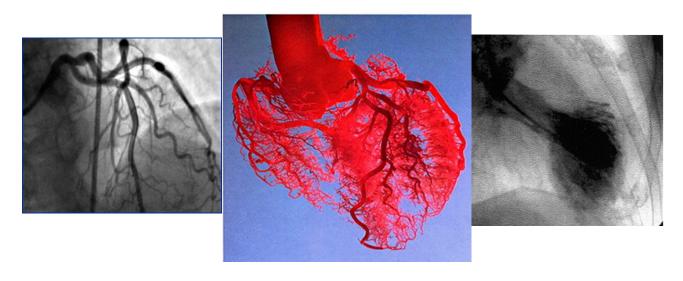
Microvascular Disease: Prevalence and Unmet Needs

C. Noel Bairey Merz, MD

Director, Barbara Streisand Women's Heart Center Cedars-Sinai Los Angeles, CA

Faculty Disclosure

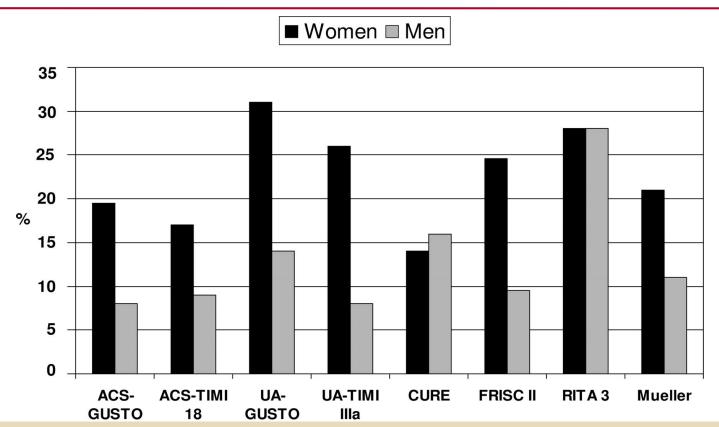
C. Noel Bairey Merz, MD


CONSULTING: Medscape*, Sanofi-Vascular*, NIH CSR and NIH ORWHAB*, iRhythm, Caladrius

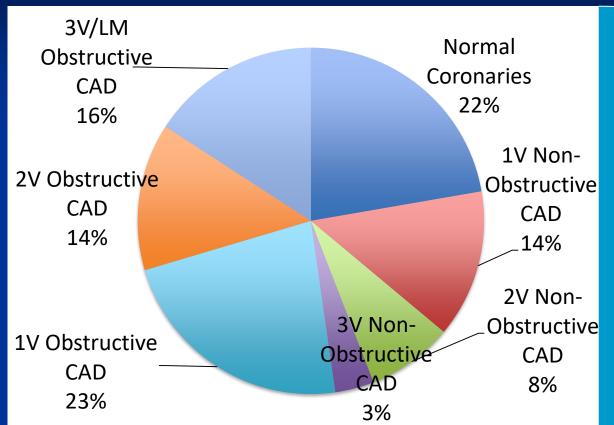
HONORARIUM*: Abbott Diagnostics

GRANT SUPPORT*: NHLBI, Louis B Mayer Foundation, NIH-CTSI, CMDRP-DoD, NIH-Caladrius, California Institute for Precision Medicine (CIAPM), Sanofi-Vascular

*paid to CSMC


Women and Coronary Microvascular Dysfunction INOCA/MINOCA

Ischemia with No Obstructive CAD (INOCA)

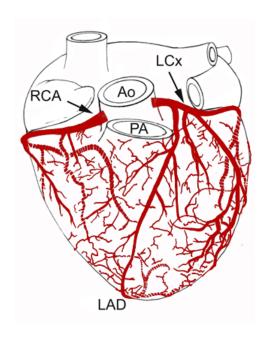

Myocardial Infarction with No Obstructive CAD (MINOCA)

Prevalence of normal or non-obstructive coronary arteries: common in women

VA CART 37,674 male patients – 47% non-obstructive or normal coronary arteries

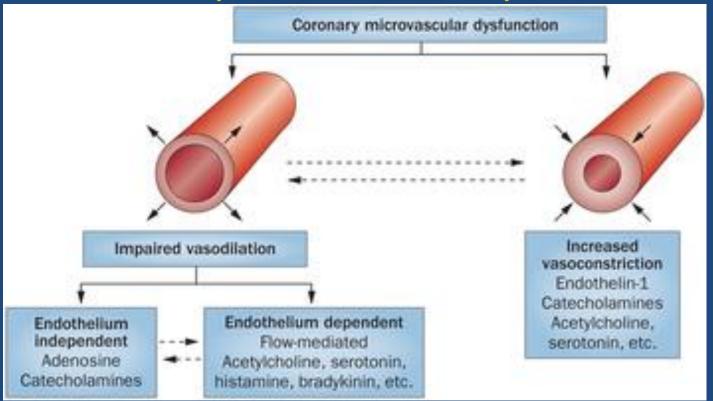
Now common in men!

Mechanisms of Myocardial Ischemia (including INOCA)


Epicardial coronary arteries

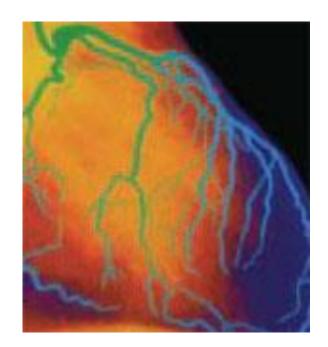
Coronary microcirculation Atherosclerotic disease Vasospastic disease Microvascular dysfunction Impairs coronary physiology Stable plaque Vulnerable plaque Focal/transient Persistent and myocardial blood flow vasospasm vasospasm in subjects with risk factors Reduction Plaque rupture Prinzmetal Myocardial in CFR infarction angina Contributes Induces severe to myocardial acute ischaemia **Thrombosis** ischaemia 'Takotsubo' Demand in CAD and CMP ischaemia Acute coronary ± angina syndromes/infarction

These three mechanisms can overlap


Coronary Vascular Resistance

www.vhlab.umn.edu/

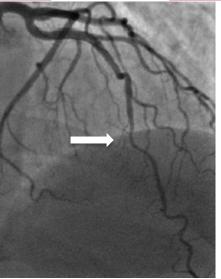
- Epicardial arteries normally contribute <10% of the coronary vascular resistance
 - -hemodynamic significance when>70% of the lumen is obstructed
- Coronary microvasculature is responsible for >70% of the coronary resistance under physiological circumstances.


Coronary Microvascular Dysfunction

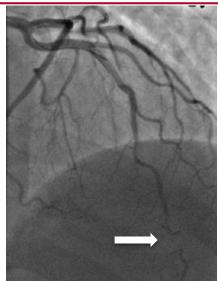
Crea, F, et al. Nature Reviews Cardiology. 2015;12:48–62.

Mechanisms: Coronary Microvascular Dysfunction (CMD) is Prevalent in INOCA

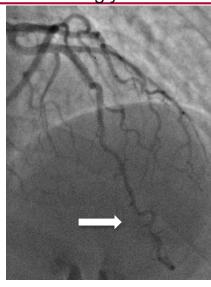
- Approximately 50% of patients with:
 - persistent chest pain
 - non-obstructive coronary artery disease
- have physiologic evidence of coronary microvascular dysfunction measured by abnormal coronary flow reserve (CFR) or coronary blood flow (CBF)
- prevalence is higher (70%) with evidence of myocardial ischemia



Hasdai D et al. *Mayo Clin Proc.* 1998;73:1133-1140 Wei J et al. JACC Interventions. 2012;6(5):64


Case: Functional Coronary Angiography

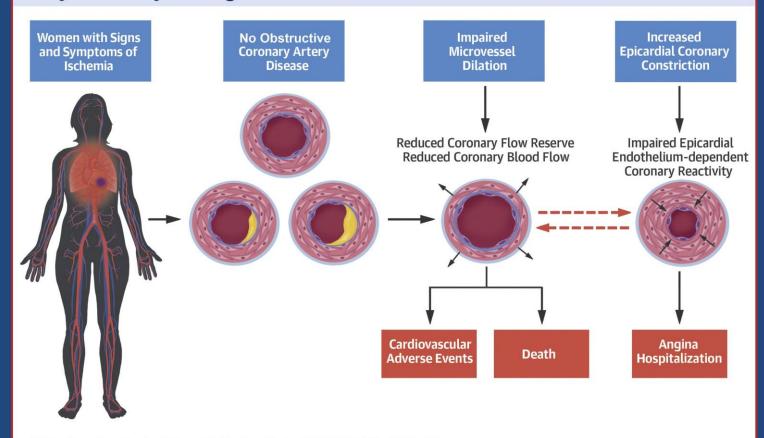
Baseline


mid LAD bridging and plaque on IVUS

Adenosine

Abnormal CFR 1.8, adenosine-induced vasoconstriction, chest pain but no ST-T changes

Nitroglycerin



Resolution of vasoconstriction

Abnormal

Abnormal LVEDP = 18

CENTRAL ILLUSTRATION: Women With Signs and Symptoms of Ischemia With No Obstructive Coronary Artery Disease and the Potential Role of Coronary Reactivity Testing

AlBadri, A. et al. J Am Coll Cardiol. 2019;73(6):684-93.

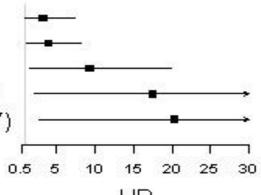
INOCA Treatment Knowledge Gaps

- Coronary Microvascular Dysfunction is associated with elevated major cardiac event rate, persistent angina and elevated health costs
- 2. Observational and randomized intermediate outcome trials support therapeutic strategies
- Existing guidelines focus on symptom management and current clinical practice is reassurance
- 4. Therapeutic clinical trials are needed

Observational Outcomes: Low use of optimal medical therapy and elevated 1-year MI rate following INOCA angiogram

	Normal Coronaries	1V Non- Obstructive CAD	2V Non- Obstructive CAD	3V Non- Obstructive CAD	1V Obstructive CAD	2V Obstructive CAD	3V/LM Obstructive CAD	P-Value
IHD	100 (1.2%)	119 (2.3%)	73 (2.4%)	40 (2.9%)	618 (7.2%)	443 (8.5%)	545 (9.1%)	
Stable Angina	281 (3.3%)	188 (3.6%)	101 (3.3%)	60 (4.4%)	391 (4.6%)	254 (4.9%)	232 (3.9%)	
Discharge Medicat	ions							
Statins	3,758 (44.8%)	3,129 (60.1%)	1,920 (63.5%)	885 (64.4%)	6,395 (74.9%)	3,893 (75.1%)	4,359 (73.1%)	<.0001
Beta-blockers	3,142 (37.4%)	2,506 (48.2%)	1,591 (52.6%)	733 (53.3%)	5,831 (68.3%)	3,745 (72.3%)	4,440 (74.4%)	<.0001
ACE/ARB	2,848 (33.9%)	2,341 (45.0%)	1,399 (46.3%)	694 (50.5%)	4,414 (51.7%)	2,747 (53.0%)	2,928 (49.1%)	<.0001
Thienopyridines	109 (1.3%)	258 (5.0%)	196 (6.5%)	125 (9.1%)	4,283 (50.2%)	2,502 (48.3%)	1,773 (29.7%)	<.0001

Mild Non-Obstructive Mod Non-Obstructive 1V Obstructive 2V Obstructive 3V/LM Obstructive


3.26 (1.45, 7.35)

3.91 (1.86, 8.18)

9.30 (4.37, 19.81)

17.52 (8.51, 36.06)

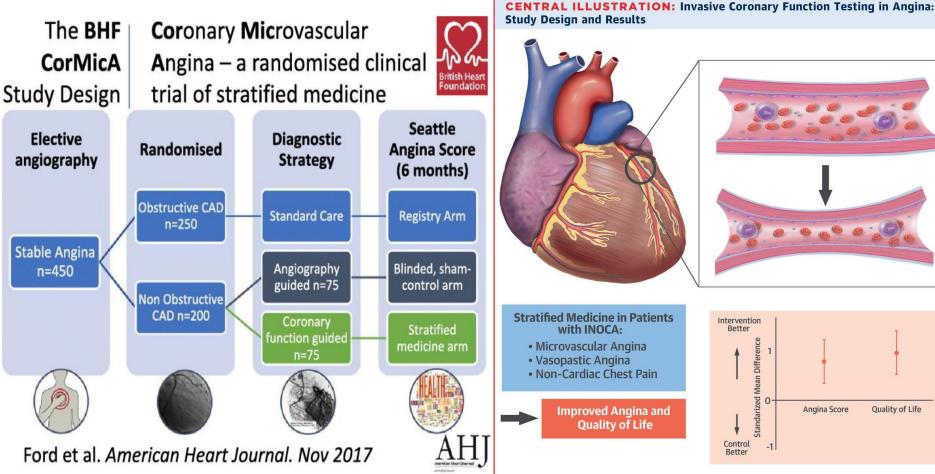
20.28 (10.34, 39.77)

HR

WISE CMD Randomized Pharmacologic PROBE Trials

Trial (n)	Intervention	Results
QWISE ¹ (n=78)	quinipril	↑ CFR; V angina
FemHRT-WISE ² (n=35)	ethinyl estradiol and norethindrone acetate	→ MRS; V angina
EWISE ³ (n=41)	eplenerone	→CFR; →angina
SWISE ⁴ (n=23)	sildenafil	→CFR; →angina
RWISE Pilot ⁵ (n=20)	ranolazine	⊅ MPRI; V angina
RWISE ⁶ (n=128)	ranolazine	→MPRI; →angina

CFR = coronary flow reserve, MRS = magnetic resonance spectrosopy; myocardial perfusion reserve index; WISE = Women's Ischemia Syndrome Evaluation. 1. Pauley AHJ 2011; 2. Bairey Merz AHJ 2010; 3. Bavry AHJ 2014; Denardo Clin Card 2011; 5. Mehta JACC Imaging; 6. Bairey Merz EHJ 2015


DES in Stable Angina: ORBITA Trial

Change from Baseline	PCI	Sham	P Value
Exercise time (sec)	28.4	11.8	0.200
Peak oxygen uptake (ml/min)	-2.0	10.9	0.741
SAQ Physical Limitation	7.4	5.0	0.420
SAQ Angina Frequency	14.0	9.6	0.260
SAQ Angina Stability	-4.2	-5.1	0.851
Quality of Life	0.03	0.03	0.994
Duke Treadmill Score	1.22	0.10	0.104
Complete Freedom from Angina	49.5%	31.5%	< 0.05

Compared with placebo, PCI improved stress echo by 1.07 segment units (p<0.00001), with larger improvements in stress echo with lower levels of FFR and iFR ($p_{interaction}$ <0.00001)

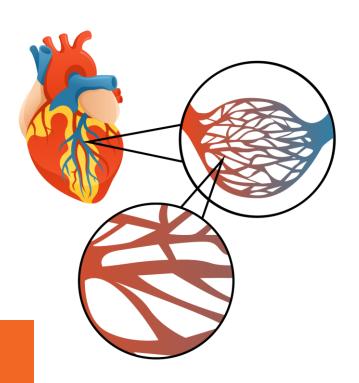
Randomized CRT Protocol Improves Angina Outcomes

Ford, T.J. et al. J Am Coll Cardiol. 2018:72(23):2841-55.

WARRIOR: Women's IschemiA TReatment Reduces Events In Non-ObstRuctive CAD Trial

Carl Pepine MD
Noel Bairey Merz MD
Eileen Handberg PhD
Rhonda Cooper-DeHoff PharmD
Janet Wei MD
John Spertus MD
Bernard Chaitman MD
William Weintraub MD

4,422 subjects with angina, no obstructive CAD randomized to IMT (intensive statin and ACE/ARB) vs GMT (guideline directed risk factor management) for reduction of MACE (all-cause death, non-fatal-MI, -stroke, or hospitalization for angina or HF)


Coronary Microvascular Dysfunction: Prevalence and Unmet Needs

- CMD is prevalent in >50% INOCA patients
- ESC guidelines endorse treatment consistent with stable angina (SIHD) guidelines¹
- Diagnostic testing and use of anti-anginal therapy improved angina and quality of life
- Additional, novel anti-ischemic/anti-anginal therapies are needed
- Large outcome trials are needed

Defining Refractory Angina: Epicardial and Microvascular

Amir Lerman, MD

Barbara Woodward Lips Professor Associate Chair, Cardiovascular Medicine Director, Cardiovascular Research Center, Mayo Clinic Rochester, MN

Faculty Disclosure

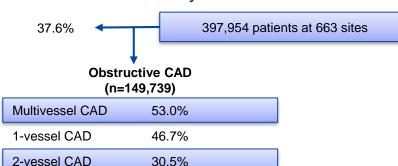
Amir Lerman, MD

CONSULTING FEE: Itamer Medical, Philips

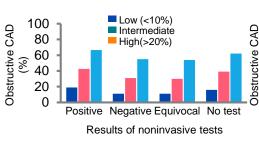
50-Year-Old Female With Chest Pain

- Had a severe episode of CP while driving on highway 110 with her window open on her way for dental appointment.
- Arrived at the ER: MI was ruled out
- History of obesity and PCO syndrome
- She continues to complain on recurrent episodes of chest pain

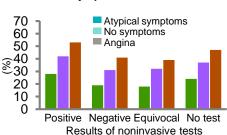
67 year old male with Chest Pain


- S/P NSTEMI and stent to LAD
- Continue to complain on progressive chest pain during exertion
- Several ER visits with ECG changes

ORIGINAL ARTICLE


Low Diagnostic Yield of Elective Coronary Angiography

Study Population and Rates of Obstructive Coronary Artery Disease


22.5%

3-vessel CAD

Symptom Characteristic

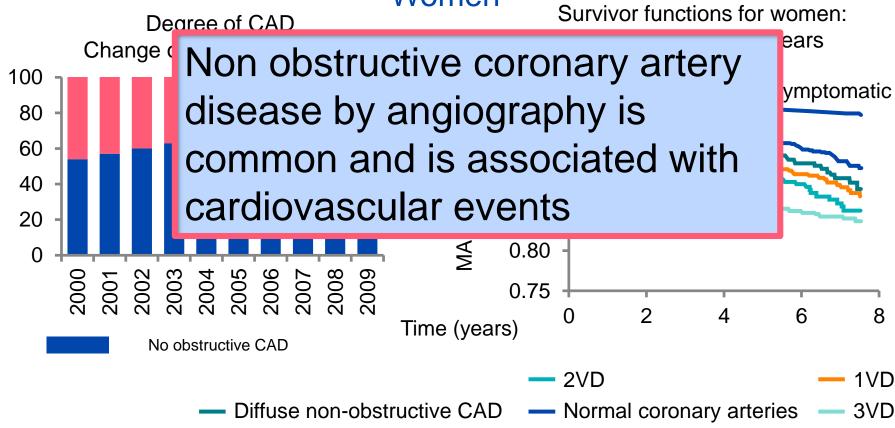
Research

Original Investigation

Nonobstructive Coronary Artery Disease and Risk of Myocardial Infarction

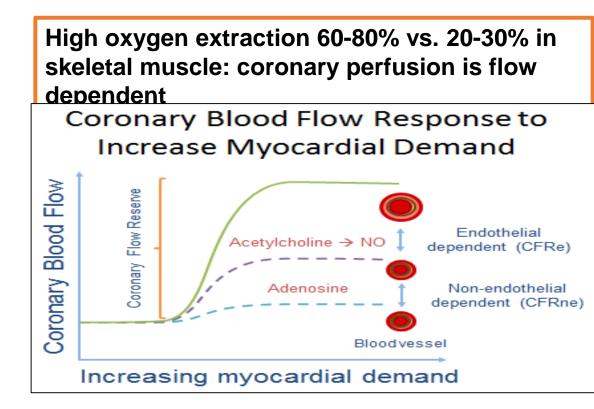
Among 37 674 patients, 8384 patients (22.3%) had non obstructive CAD

Figure 2. Adjusted Cox Model Results for 1-Year Myocardial Infarction, Mortality, and Combined Myocardial Infarction and Mortality by CAD Extent, Relative to No Apparent CAD

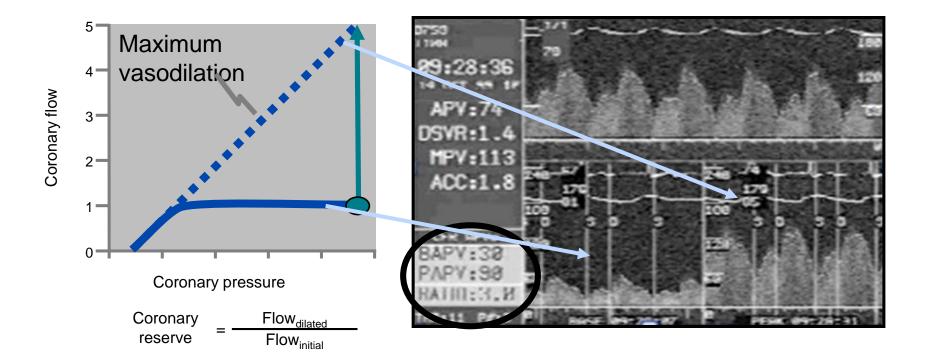

-1year myocardial infarction

	Events	Patients	HR (95% CI)	
Obstructive CAD				
3-Vessel or left main	137	6036	19.5 (9.9-38.2)	⊢
2-Vessel	110	5452	16.5 (8.1-33.7)	⊢
1-Vessel	101	9411	9.0 (4.2-19.0)	
Nonobstructive CAD				
3-Vessel	6	1133	4.5 (1.6-12.5)	
2-Vessel	13	2605	4.6 (2.0-10.5)	()
1-Vessel	10	4646	2.0 (0.8-5.1)	
No apparent CAD	8	8391	1 [Reference]	•
				0.5 1.0 5.0 HR (95% CI)

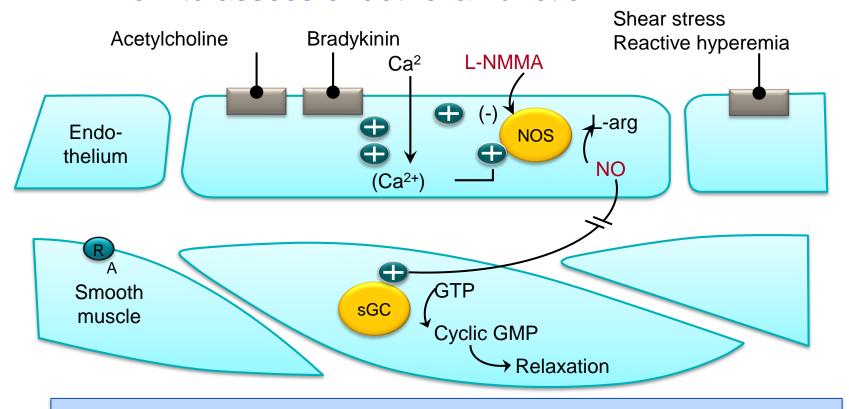
–1year mortality


,			,	
	Events	Patients	HR (95% CI)	
Obstructive CAD				
3-Vessel or left main	239	6036	3.4 (2.6-4.4)	⊢•
2-Vessel	164	5452	2.8 (2.1-3.7)	— — — — — — — — — — — — — — — — — — —
1-Vessel	192	9411	1.9 (1.4-2.6)	
Nonobstructive CAD				
3-Vessel	27	1133	1.6 (1.1-2.5)	
2-Vessel	35	2605	1.0 (0.7-1.5)	
1-Vessel	85	4646	1.4 (1.0-2.0)	
No apparent CAD	103	8391	1 [Reference]	•
				0.5 1.0 2.0
				HR (95% CI)

Major Adverse Cardiovascular Event-Free Survivor Functions Women

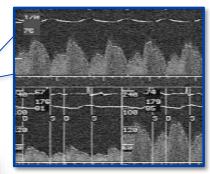


Jespersen: European Heart Journal (2012) 33, 734-744


Coronary Microcirculation

Coronary Flow Reserve Response to Adenosine is Non-Endothelial Dependent

How to assess endothelial function?

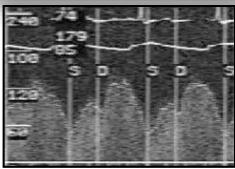


Coronary blood flow increase in response to exercise and mental stress is endothelium dependent and parallels the response to intracoronary acetylcholine.

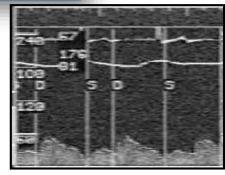
Functional Angiogram Protocol

Diagnostic angiography

Adenosine IC 24-72 μg CFR: Non endothelium microcirculation



Acetylcholine (endothelium dependent vasodilator)



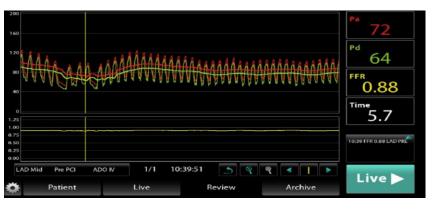
Epicardial

Microcirculation

Mechanism/drug	Non-Endothelium	Endothelial function Epicardial	Endothelial function Microcirculation
Adenosine Microcirculation	% ∆ in CBF Doppler >2.5	=	_
Acetylcholine	_	% ∆ in CAD >20%	% ∆ in CBF >50%
NTG Epicardial	% A in CAD QCA	_	_

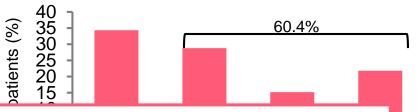
CAD: coronary artery diameter, CBF coronary blood flow

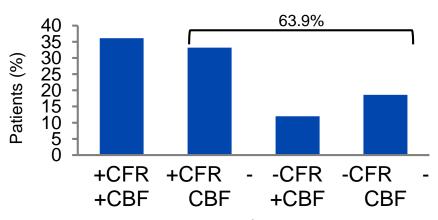
50-Year-Old Female With Chest Pain: Functional coronary angiography

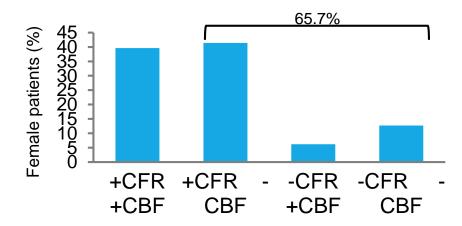

Baseline Acetylcholine 10-4M

CFR to adenosine 2.2 changes in CBF to Ach -10 %

67-year-old male with Chest Pain

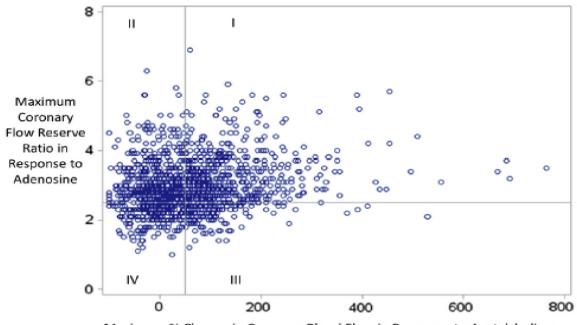

- CFR= 2.5
- Response to IC acetylcholine
- % change of CBF 10%


Prevalence of Microvascular Dysfunction in Patients With Non-Obstructive CAD


1,439 patients with chest pain and non-obstructive

Microvessel endothelial-dependent and independent function was examined by evaluating changes in coronary blood flow after intracoronary administration of adenosine

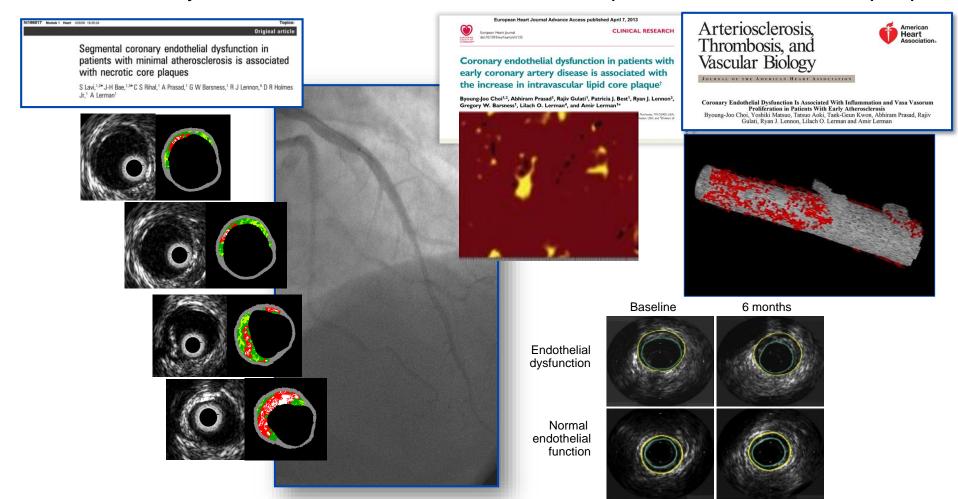
The majority of the patients with chest pain and nonobstructive CAD have microvascular dysfunction



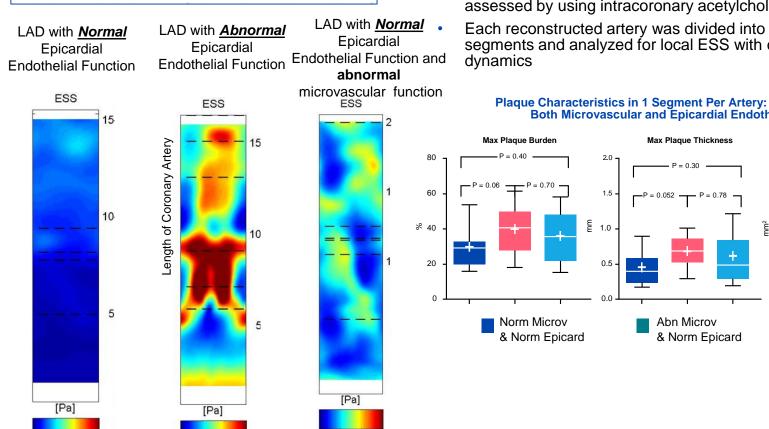
Sara and Lerman JACC Int. 2015

Coronary microvascular dysfunction among patients with chest pain and non-obstructive coronary artery disease

1,439 patients with measurements available for both CBF and CFR.



Maximum % Change in Coronary Blood Flow in Response to Acetylcholine


Two-thirds of all patients had some sort of microvascular dysfunction.

Endothelial dysfunction is associated with tissue chaptalization of vulnerable plaque

Local Low Shear Stress and **Endothelial Dysfunction in Patients With** Nonobstructive Coronary Atherosclerosis

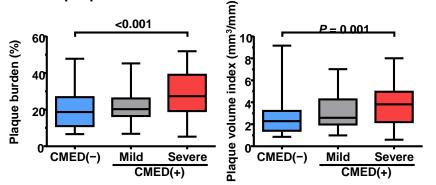
- 65 patients with nonobstructive coronary atherosclerosis
- Microvascular and epicardial coronary endothelial function was assessed by using intracoronary acetylcholine infusion

Each reconstructed artery was divided into sequential 3-mm segments and analyzed for local ESS with computational fluid

Plaque Characteristics in 1 Segment Per Artery: Analysis Based on Both Microvascular and Epicardial Endothelial Function

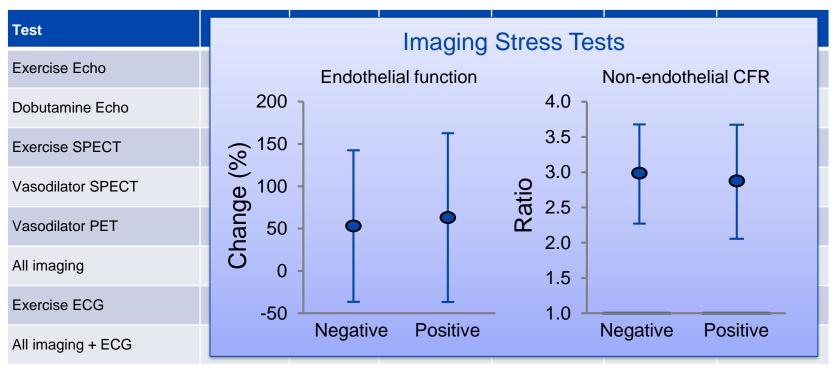
Min Lumen Area

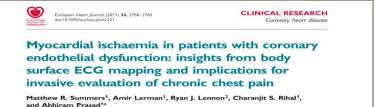
Abn Microv


& Abn Epicard

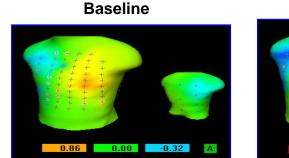
Siasos et al: J Am Coll Cardiol 2018;71:2092–102

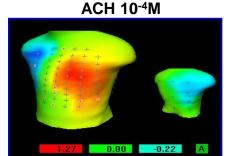
The Relationship between the Microcirculation and Epicardial Disease


Association of coronary microvascular endothelial function with plaque burden and plaque volume.


Association of coronary microvascular endothelial function with plaque composition and vulnerability.

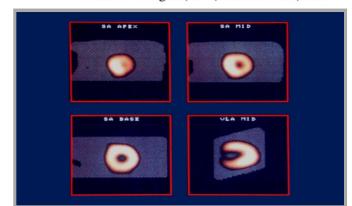
Association Between Noninvasive Tests and Coronary Flow Reserve

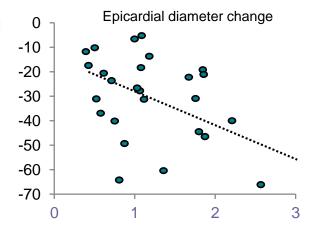

Cassar: Circ, 2009



Coronary endothelial function in response to acetylcholine

Eighty lead body surface ECG


Coronary Endothelial Function: Prime ECG



Coronary Endothelial Dysfunction in Humans Is Associated With Myocardial Perfusion Defects

David Hasdai, MD; Raymond J. Gibbons, MD; David R. Holmes, Jr, MD; Stuart T. Higano, MD; Amir Lerman, MD

Degree of ischemia (Anterior ST-shift (mV)

Coronary Microvascular Dysfunction Epicardial Plaque Vulnerable endothelial rupture or **ACS** plaque dysfunction erosion Coronary endothelial dysfunction Plaque progression Shear stress Myocardial ischemia Microcirculatory **Angina** endothelial dysfunction Cardiomyopathy, diastolic dysfunction, apical ballooning

Coronary endothelial function testing provides superior discrimination compared with standard clinical risk scoring in prediction of cardiovascular events

Martin Reriani, Jaskanwal D. Sara, Andreas J. Flammer, Rajiv Gulati, Jing Li, Charanjit Rihal, Ryan Lennon, Lilach O. Lerman and Amir Lerman

Background Endothelial dysfunction is regarded as the

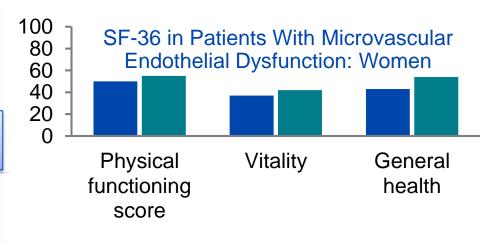
microvascular CEF correctly reclassified 11.3% of patients

CV events were assessed after a median follow-up of 9.7 years

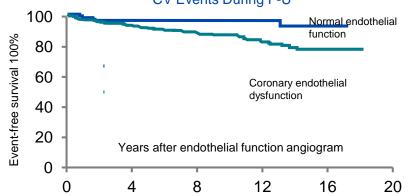
intracoronary acetylcholine in 470 patients who presented with chest pain and nonobstructive coronary artery disease. CV events were assessed after a median follow-up of 9.7 years. The association between CEF and CV events was examined, and the net reclassification improvement index (NRI) was used to compare the incremental contribution of CEF when added to FRS. The mean age was 53 years, and 68% of the patients were women with a median FRS of 8. Complications (coronary dissection) occurred in three (0.6%) and CV events in 61 (13%) patients. In univariate analysis, microvascular CEF [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.72–0.97, P=0.032] and epicardial CEF (HR 0.73, 95% CI 0.59–0.90, P=0.01) were found to be significant predictors of CV events, whereas FRS was not (HR 1.05, 95% CI 0.85–126, P=0.61). When added to FRS.

compared with FRS alone in patients presenting with chest pain or suspected ischemia. Coron Artery Dis 27:213–220 Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

Coronary Artery Disease 2016, 27:213-220


Keywords: cardiovascular events, endothelial dysfunction, endothelium, myocardial infarction, prognosis

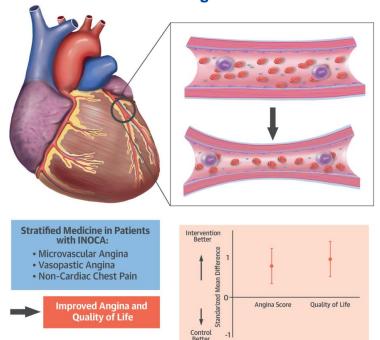
Division of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, Minnesota, USA


Correspondence to Amir Lerman, MD, Division of Cardiovascular Diseases, Mayo Clinic Rochester, 200 Frst Street, SW, Rochester, MN 55905, USA Tel: +1 507 255 4152; fax: +1 507 255 41550; e-mail: lerman.amir@mayo.edu

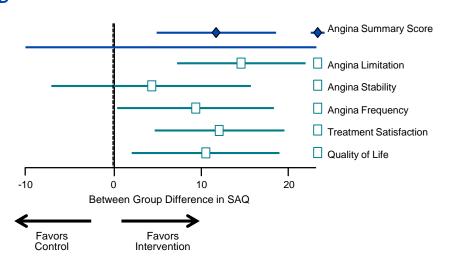
Received 12 November 2015 Revised 8 December 2015 Accepted 23 December 2015

Variable (events)	NRI
FRS + microvascular CEF	0.11
FRS + epicardial CEF	0.12
FRS + microvascular and epicardial CEF	0.228

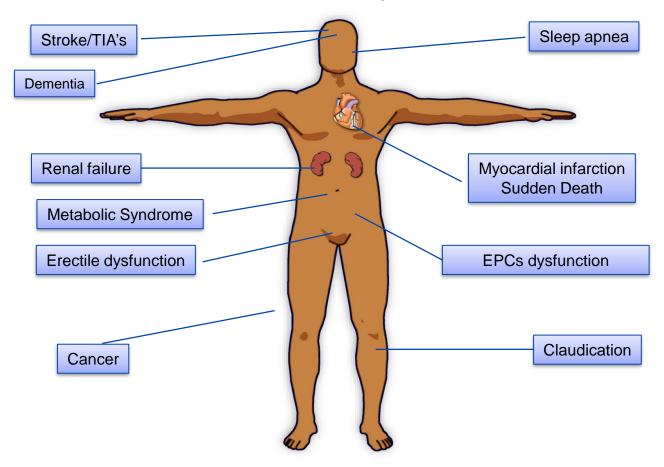
K–M Curve Showing Cumulative Proportion of Patients Without CV Events During F-U

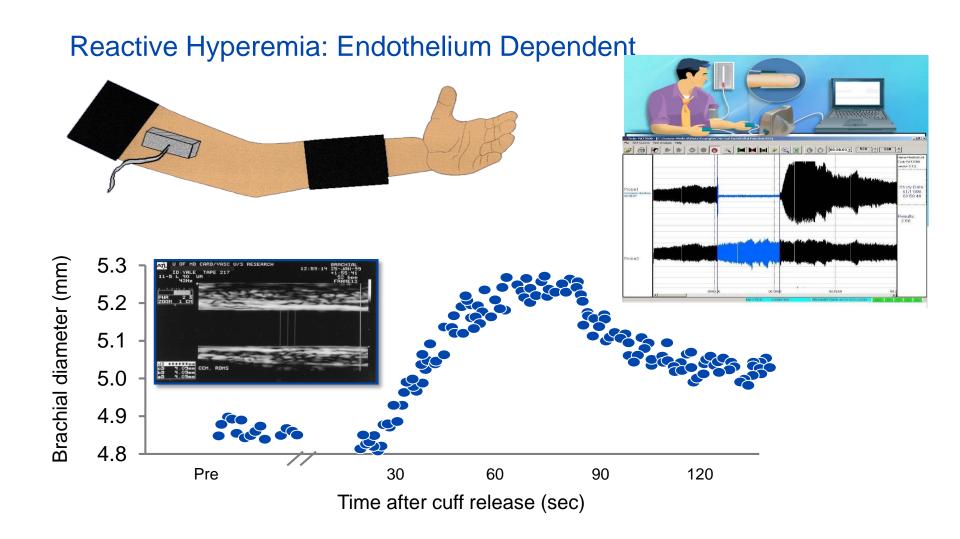

Reriani et al: Coronary Art Dis 27(3):213, 2016

Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina

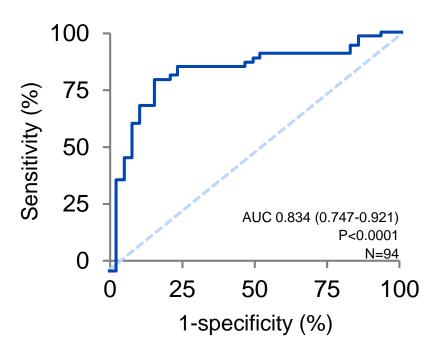

The CorMicA Trial

OBJECTIVES The purpose of this study was to test whether an interventional diagnostic procedure (IDP) linked to stratified medicine improves health status in patients with INOCA.

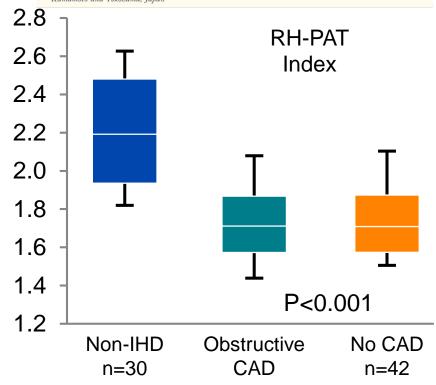

Stratified Medical Therapy Guided by an IDP in Patients With Angina but No Obstructive CAD



Primary Efficacy Outcome: Treatment Difference in the 6-Month SAQ Summary Score



Systemic Manifestation of Endothelial Dysfunction The Vulnerable Patient


Piero O. Bonetti, MD,* Geralyn M. Pumper, RN,* Stuart T. Higano, MD, FACC,* David R. Holmes, JR, MD, FACC,* Jeffrey T. Kuvin, MD, FACC,† Amir Lerman, MD, FACC* Rochester, Minnesota; and Boston, Massachusetts

Bonetti & Lerman: JACC, 2004

Digital Assessment of Endothelial Function and Ischemic Heart Disease in Women

Yasushi Matsuzawa, MD,* Seigo Sugiyama, MD, PhD,* Koichi Sugamura, MD, PhD,* Toshimitsu Nozaki, MD,* Keisuke Ohba, MD,* Masaaki Konishi, MD,* Junichi Matsubara, MD,* Hitoshi Sumida, MD, PhD,* Sulao Kojima, MD, PhD,* Yasuhiro Nagayoshi, MD, PhD,* Megumi Yamamuro, MD, PhD,* Yasuhiro Izumiya, MD, PhD,* Satomi Iwashita, MT,* Kunihiko Matsui, MD, PhD,† Hideaki Jinnouchi, MD, PhD,‡ Kazuo Kimura, MD, PhD,\$ Satoshi Umemura, MD, PhD,∥ Hisao Ogawa, MD, PhD* Kumamoto and Yokobama, Japan

Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis

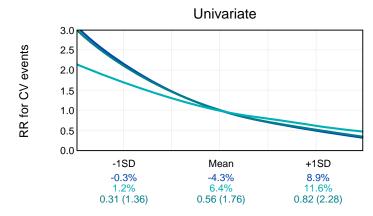
Yasushi Matsuzawa, MD, PhD; Taek-Geun Kwon, MD, PhD; Ryan J. Lennon, MS; Lilach O. Lerman, MD, PhD; Amir Lerman, MD

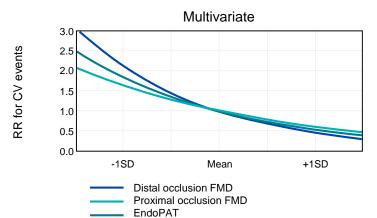
Background—Endothelial dysfunction plays a pivotal role in cardiovascular disease progression, and is associated with adverse events. The purpose of this systematic review and meta-analysis was to investigate the prospostic magnitude of noninvasive peripheral endothelial function tests, brachial artery flow-mediated dilation (FMD), and reactive hyperemia—peripheral arterial tonometry (RH-PAT) for future cardiovascular events.

Methods and Revolute—Databases of MEDLINE, EMBASE, and the Cochrane Library were sheeting that the reporting the Predictive Prediction of the Prediction of

alue in cardiovascular disease subjects was comparable between these 2 methods; a 1 SD worsening in and the life function was

raide in cardiovascular disease subjects was comparable between these 2 methods; a 1 SD worsening in endothelial function was


Conclusions—Noninvasive peripheral endothelial function tests. FMD and RH-PAT, significantly predicted cardiovascular events.


Thirty-five FMD studies of 17 280 participants and 6 RH-PAT studies of 602 participants were included in the meta-analysis.

tantly, endothelial dysfunction is not only a marker but also a provide a more tailored approach to prevent cardiovascular

The magnitude of the prognostic value in cardiovascular disease subjects was comparable between these 2 methods; a 1 SD worsening in endothelial function was associated with double cardiovascular risk.

Relative Risk for FMD and Endo PAT

Can We use Endothelial Function to Individualize Therapy?

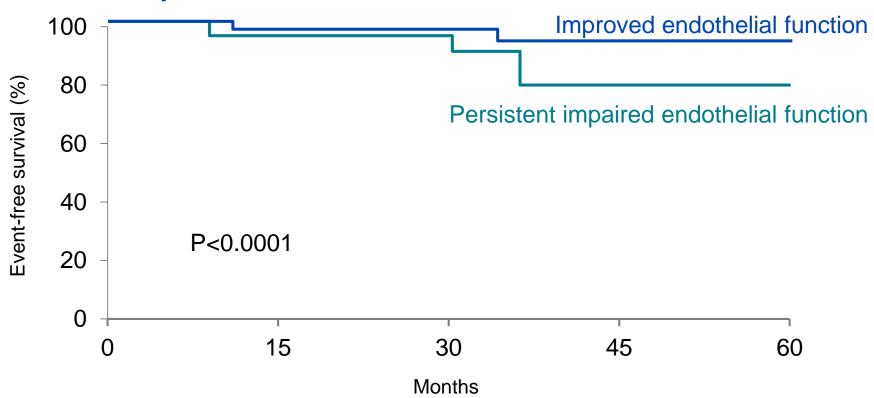
Journal of the American College of Cardiology © 2002 by the American College of Cardiology Foundation Published by Elsevier Science Inc. Vol. 40, No. 3, 2002 ISSN 0735-1097/02/\$22.00 PII S0735-1097(02)01976-9

Women and Cardiovascular Disease

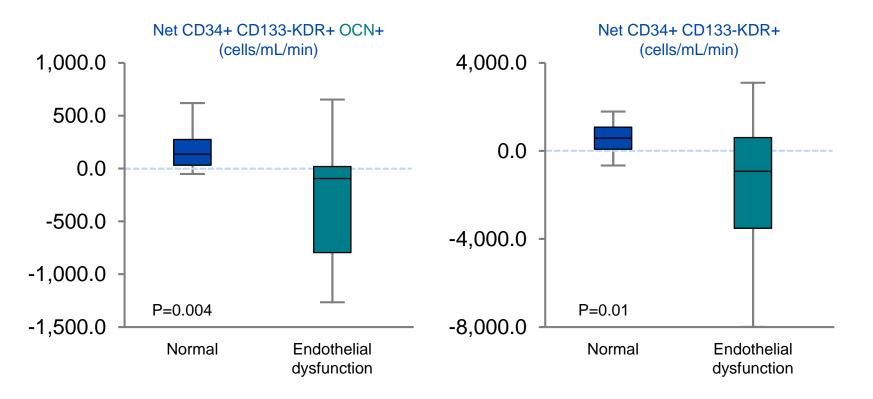
Prognostic Role of Reversible Endothelial Dysfunction in Hypertensive Postmenopausal Women

Maria G. Modena, MD, FESC, FACC, Lorenzo Bonetti, MD, Francesca Coppi, MD, Francesca Bursi, MD, Rosario Rossi, MD

Modena, Italy

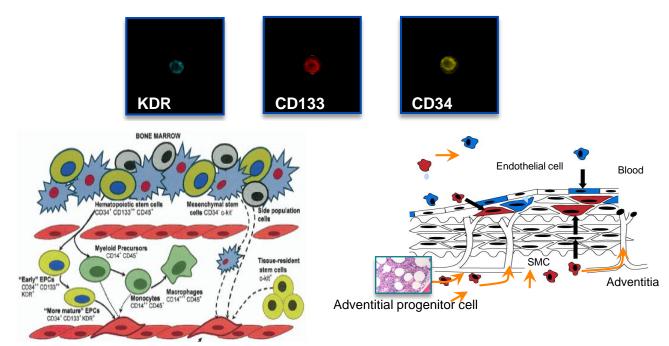

Journal of the American College of Cardiology © 2009 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 53, No. 4, 2009 ISSN 0735-1097/09/\$36.00 doi:10.1016/j.jacc.2008.08.074

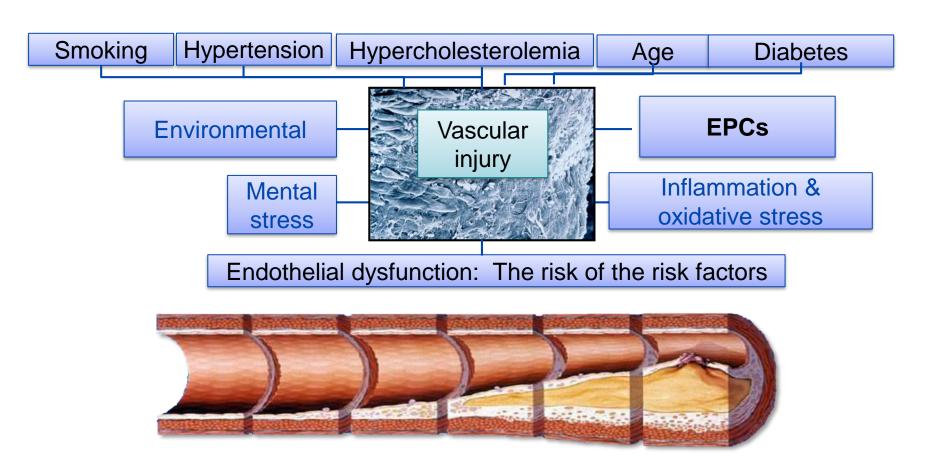
Persistent Impairment of Endothelial Vasomotor Function Has a Negative Impact on Outcome in Patients With Coronary Artery Disease


Yoshinobu Kitta, MD, PhD, Jyun-ei Obata, MD, PhD, Takamitsu Nakamura, MD, Mitsumasa Hirano, MD, Yasushi Kodama, MD, Daisuke Fujioka, MD, PhD, Yukio Saito, MD, Ken-ichi Kawabata, MD, PhD, Keita Sano, MD, Tsuyoshi Kobayashi, MD, Toshiaki Yano, MD, Kazuto Nakamura, MD, PhD, Kiyotaka Kugiyama, MD, PhD

Yamanashi, Japan

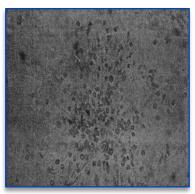
Event-Free Rate According to Persistent Endothelial Dysfunction in Patients With Mild CAD

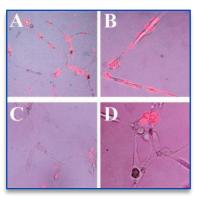

Osteogenic EPCs are Retained by Myocardium in Early Atherosclerosis

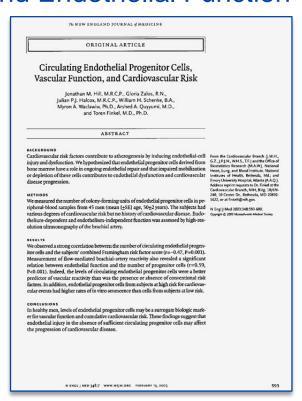

The Retention of OCN+ Cells is Associated with Coronary Calcification

Multicolor Flowcytometry Classification EPCs

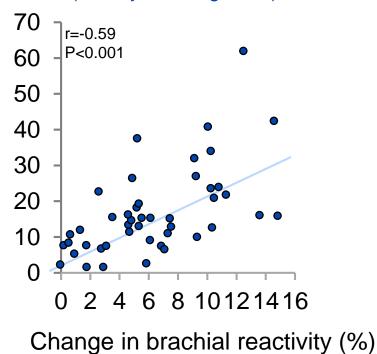
- VEGFR2/KDR (endothelial marker)
- CD133 (hematopoietic/endothelial stem cell marker)
- CD34 (hematopoietic/endothelial stem cell marker)

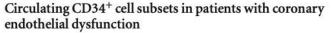


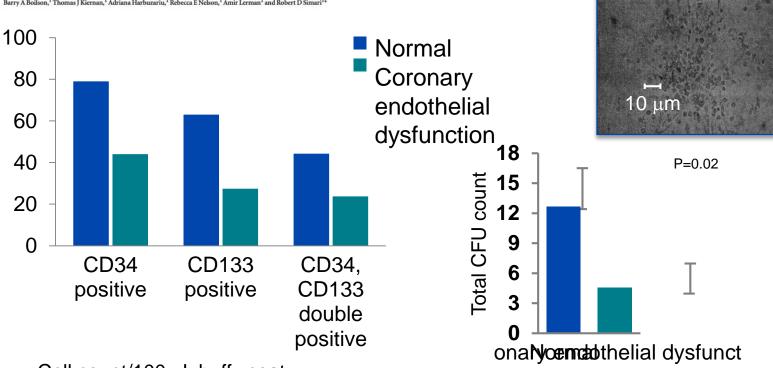

Risk factors and Atherosclerosis


How Do We Assess Role of EPCs?

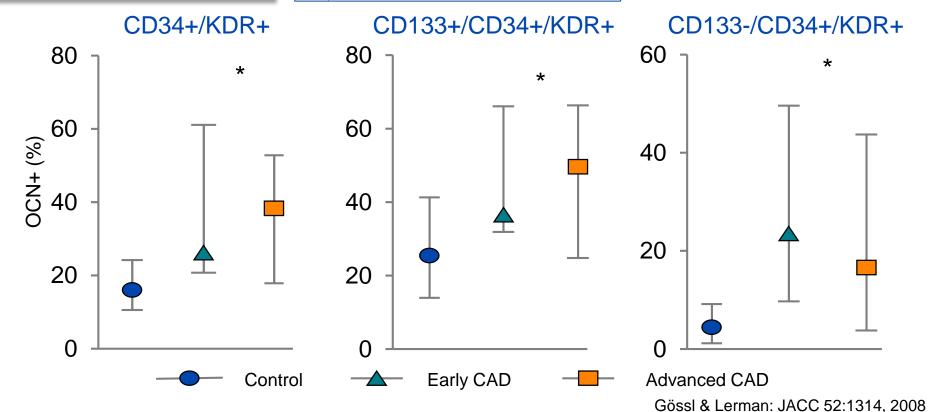
- Number of EPCs
- The function of the EPCs
- Colony formation unit
- Tube formation




Relation Between the Number of Endothelial Progenitor Cells and Endothelial Function

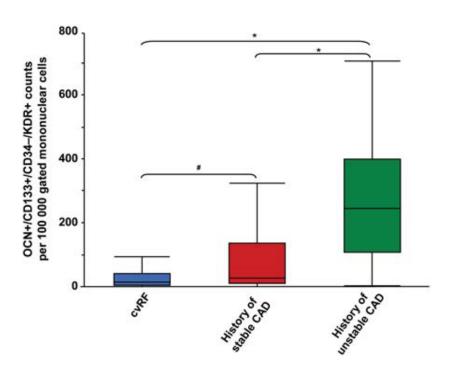

Endothelial Progenitor Cells (Colony-Forming Units)

Hill et al: NEJM 348(7):597, 2003

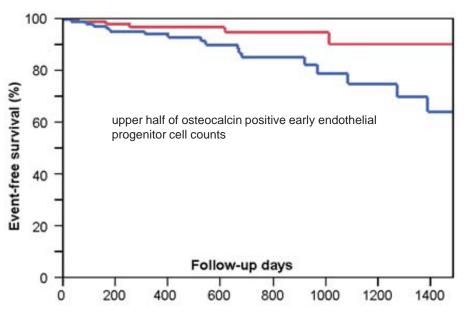


Cell count/100 μL buffy coat

Circulating Osteoblast-Lineage Cells in Humans


Guiti Z. Eghbali-Fatourechi, M.D., Jesse Lamsam, M.S., Daniel Fraser, Ph.D., David Nagel, A.B., B. Lawrence Riggs, M.D., and Sundeep Khosla, M.D. Osteocalcin Expression
by Circulating Endothelial Progenitor
Cells in Patients With Coronary Atherosclerosis

Mario Gössl, MD, FESC,* Ulrike I. Mödder, PhD,† Elizabeth J. Atkinson, MS,‡ Amir Lerman, MD, FACC,* Sundeep Khosla, MD† Rochester. Minnesota



Osteocalcin positive CD1331 /CD342 /KDR1 progenitor cells as an independent marker for unstable atherosclerosis

Osteocalcin positive 'early' endothelial progenitor cells.

Event-free survival according to the level of osteocalcin positive 'early' endothelial progenitor cells.

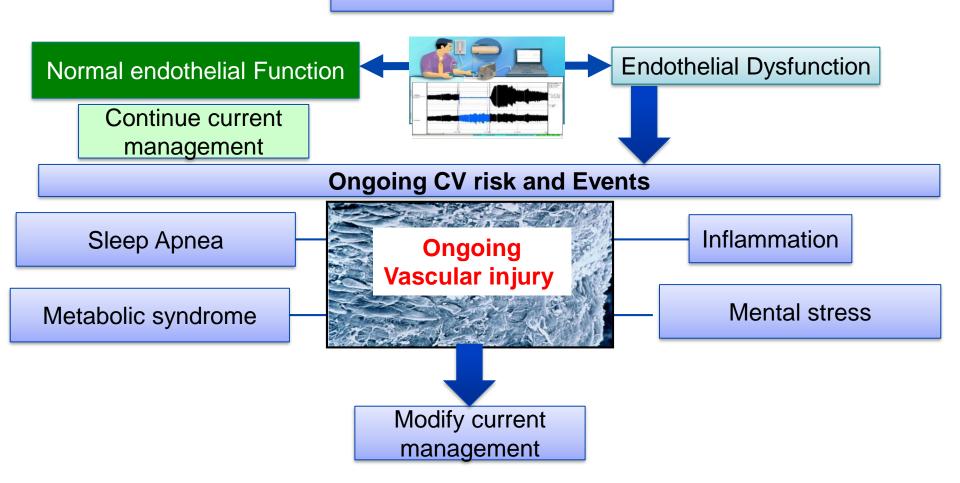
Vasodilators

Non-Vasodilators

Epicardial

Nitrate

Calcium channel blockers

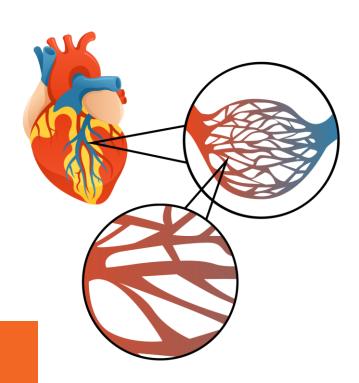

Microcirculation

Calcium channel blockers FDE-I

Lifestyle modification
Statins
L-arginine

Ranolazine
Allopurinol
Metformin
EPCs clinical study

Traditional CV risk factors



Thank you

Lerman.amir@mayo.edu

Pioneering Advancements in Cell Therapies

Thomas J. Povsic, MD, PhD
Interventional Cardiologist
Duke University Medical Center
Durham, NC

Faculty Disclosure

Thomas J. Povsic, MD, PhD

SALARY: Sanofi-Aventis, Orbus-Neich, CSL Boering, Intracellular Therapies, Janssen Pharmaceuticals, Eli Lilly, Merck, Amgen, GSK, St. Jude Medical, Regeneron

CONSULTING: Caladrius Biosciences, Ventrix, Cytosorbents, NovoNordisk

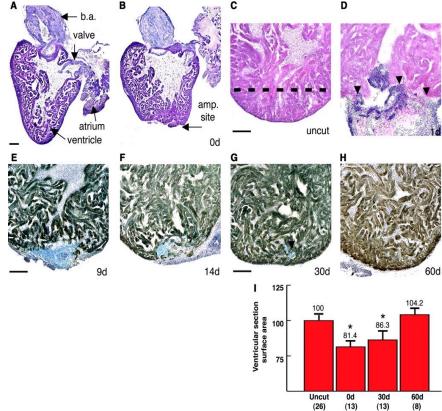
CONTRACTED RESEARCH: CSL Boehring, Intracellular Therapies

Disclosures

- Baxter Healthcare funded the studies described
- Baxter Healthcare (now Shire Plc) provided research funding to DCRI for ACT-34, RENEW, and partly funded a combined patient level analysis
- Caladrius Biosciences provided research funding to DCRI for additional analyses

Where are we?

In the context of developing therapies for serious unmet clinical needs, the best approach is to think of clinical and statistical plausibility together.


- Mechanistic plausibility
- Preclinical models
- Reducing risk (autologous products)
- Consistency of effect
- Totality of data
- Clinical need

The promise.....

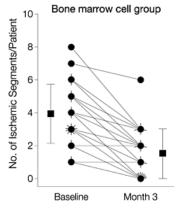
- Zebrafish fully regenerate hearts within 2 months of 20% ventricular resection
- Robust proliferation of myocytes at epicardial edge of new myocardium
- ? Model to illuminate factors to induce regeneration in man

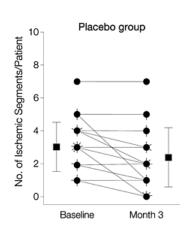
-- Ross KD et al, Science, 2002

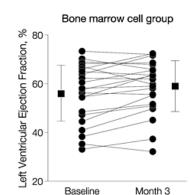
Myocardial Repair

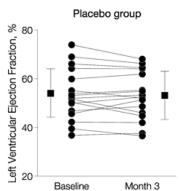
The Y Chromosome in Transplanted Hearts:

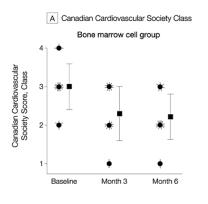
Myocytes

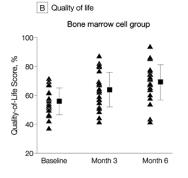

Endothelial Cells

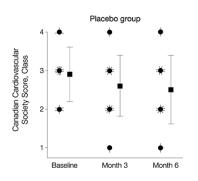

SMCs

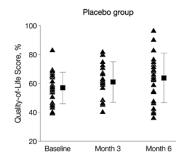

Capillary Endothelium

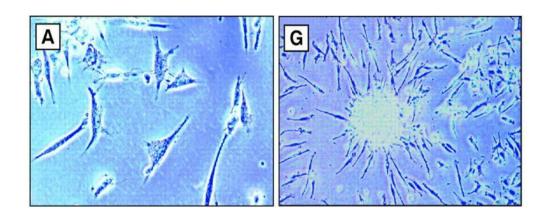


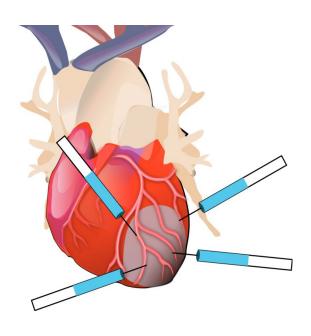

Duke Clinical Research Institute











Original Description of Endothelial Progenitor Cells (EPC) in Adults

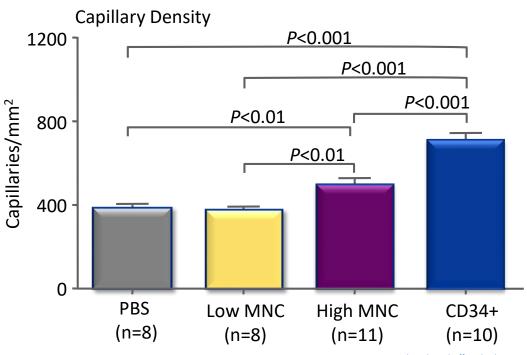
- •CD34+ cells isolated
- Cultured on fibronectin
- •Grew into colonies resembling embryonic blood islands

Pre-clinical Experience of Transplanted CD34+ Human Progenitor Cells in a Chronic Myocardial Ischemia Rat Model

Treatment Groups

1.PBS: 100 µl

2.Low MNC: 5×10^5 cells/rat kg


3. High MNC: total MNCs containing CD34+ dose

4.CD34+: 5×10⁵ cells/rat kg

n=8~11 rats in each group

Pre-clinical Experience Results: Treatment with CD34+ Cells Increases Myocardial Capillary Density

PBS = Phosphate-buffered saline; MNC = mononuclear cells. Kawamoto A, et al. *Circulation*. 2003;107:461-468

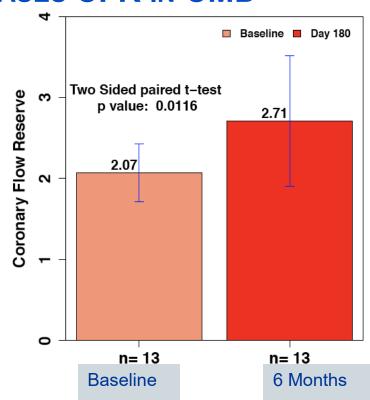
CD34+ Cells Are Associated with Aerobic Physical Function

	Unadjusted		Adjusted*	
	Estimate	p-value	Estimate	p-value
Usual Gait Speed	0.055	0.005	0.046	0.015
Rapid Gait Speed	0.092	0.007	0.079	0.020
6MWD	90.6	0.004	71.7	0.012
5-chair stand	-0.66	0.031	-0.50	0.10
Balance Time	0.188	0.25	0.124	0.40
Grip Strength	0.663	0.33	0.743	0.26
SPPB summary score	0.211	0.073	0.172	0.15
SF-36 Phys. Fxn Score	4.38	0.009	3.07	0.045

^{*}Adjusted for age, arm, BMI, 8 comorbid conditions, and IL-6 level. CD34⁺ cells were more tightly associated than CD133⁺ or ALDH^{br} cells

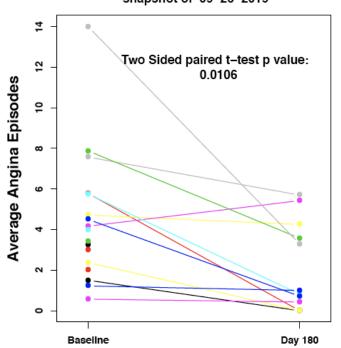
CD34⁺ Cells Predict Future Physical Function

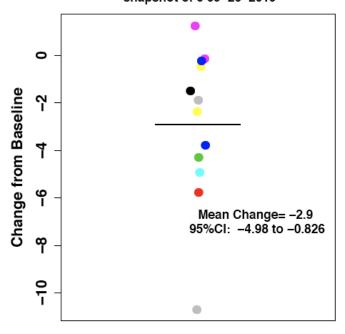
	Unadjusted		Adjusted*	
	Estimate	p-value	Estimate	p-value
3-month				
Usual Gait Speed	0.073	0.002	0.065	0.003
Rapid Gait Speed	0.101	0.006	0.086	0.014
6MWD	74.4	0.027	59.6	0.036
12-month	RV	X000222		
Usual Gait Speed	0.057	0.032	0.041	0.087
Rapid Gait Speed	0.141	0.001	0.126	0.003
6MWD	100.3	0.023	701	0.028
Change				
Usual Gait Speed	0.026	0.035	0.025	0.034
Rapid Gait Speed	0.056	0.007	0.056	0.006
6MWD	4.29	0.774	14.02	0.228


^{*}Adjusted for age, arm, BMI, 8 comorbid conditions, and IL-6 level.

SINGLE ADMINISTRATION OF CD34 CELLS SIGNIFICANTLY INCREASES CFR IN CMD

- Patient follow-up to date (n=13)
- Coronary flow reserve (CFR)
 - Ratio of maximal to resting coronary blood flow
- Increased CFR documents improved microvascular function
- Presentation at AHA meeting 2019



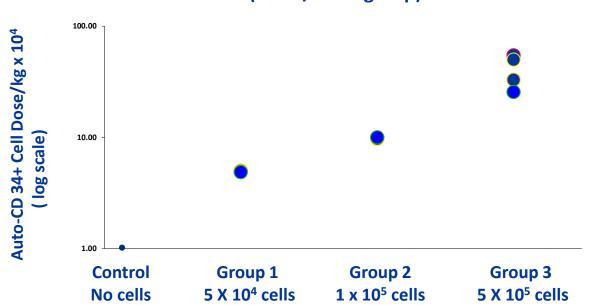


SINGLE ADMINISTRATION OF CD34 CELLS SIGNIFICANTLY REDUCES ANGINA FREQUENCY IN CMD

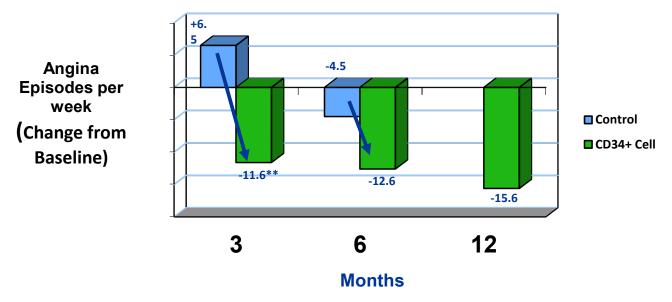
Individual Values in Average Angina Episodes over time snapshot of 09–26–2019

Change in Average Angina Episodes from Baseline snapshot of 0 09–26–2019

Duke Clinical Research Institute


	Study 11196	Study 24779/34976	Study 901001
N	24	167	112
CD34 ⁺ treated ptns	18	112	57
AF at baseline	-	≧7 episodes/wk	≧7 episodes/wk
Exercise at baseline	1-6 minutes Bruce Protocol	3-10 minutes mod Bruce Protocol	3-10 minutes mod Bruce Protocol
Cell mobilization	G-CSF 5 mcg/kg/d x 5 d	G-CSF 5 mcg/kg/d x 5 d	G-CSF 5 mcg/kg/d x 4 d
Cell Harvesting	Apheresis day 5	Apheresis day 5	Apheresis day 5
Cell Isolation	Local	Local	Central
Cell Delivery	IM via NOGA Myostar	IM via NOGA Myostar catheter	IM via NOGA Myostar catheter
Cell Dose	1 x 10 ⁴ , 1 x 10 ⁵ , and 5 x 10 ⁵ cells/kg	1 x 10 ⁵ , and 5 x 10 ⁵ cells/kg	1 x 10 ⁵ cells/kg
Randomization	1:1:1:1 to 3 doses vs. placebo	1:1:1 to 2 doses and placebo	2:1:1 to CD34+ cells vs. placebo vs. open label SOC
Efficacy control	Active (cell mobilization, apheresis, placebo injection)	Active (cell mobilization, apheresis, placebo injection)	Active (cell mobilization, apheresis, placebo injection)
Design	Double blind	Double Blind	Double blind (efficacy) with open label SOC arm
AF assessments	Baseline, 3m, 6 m	Baseline, 3m, 6m, 12 m, 24 m	Baseline, 3m, 6m, 12 m
TET Assessments	Baseline, 3 m	Baseline, 3m, 6m, 12 m	Baseline, 3m, 6m, 12 m
Clinical FU	6 m	12 m (24779), 24 m (34976)	24 m
Clinical FU	Investigator reported	CEC adjudicated	CEC adjudicated

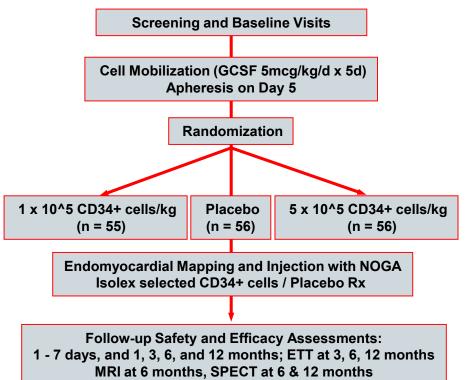
Phase I: The Dose Range is Feasible


Actual Auto-CD 34+ Cell Dose Delivered / kg (n = 6 / dose group)

Losordo D W et al. Circulation 2007;115:3165-3172

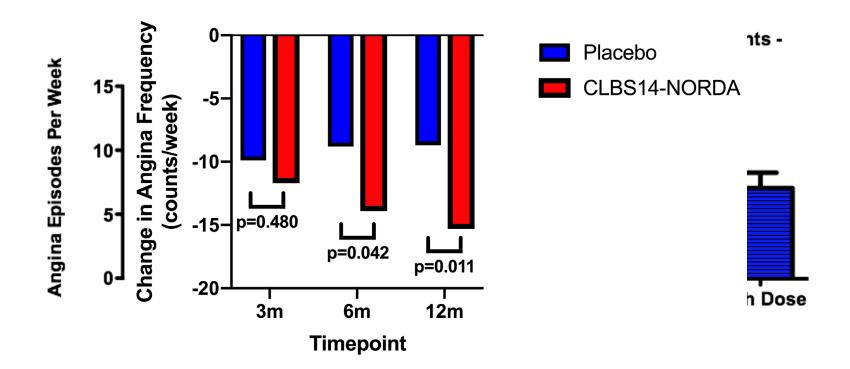
Phase I: Angina Frequency Episodes per Week

12 month control data is not represented due to control patient cross-over after 6 months

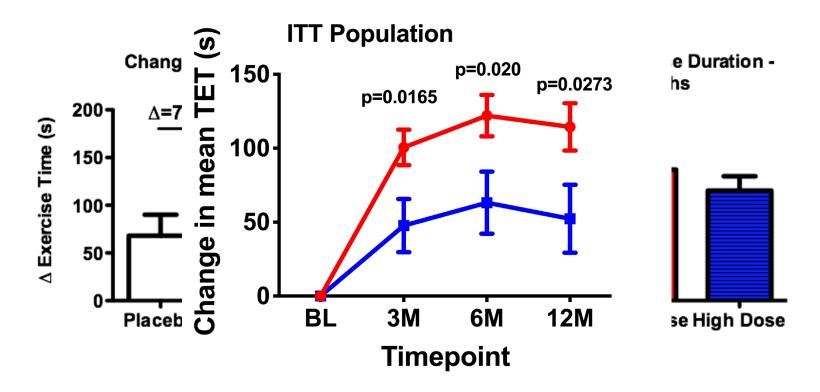


Duke Clinical Research Institute

Randomized, Double-Blind, Placebo Controlled Trial of Autologous CD34+ Cell Therapy for Refractory Myocardial Ischemia


Subject population (n=167)

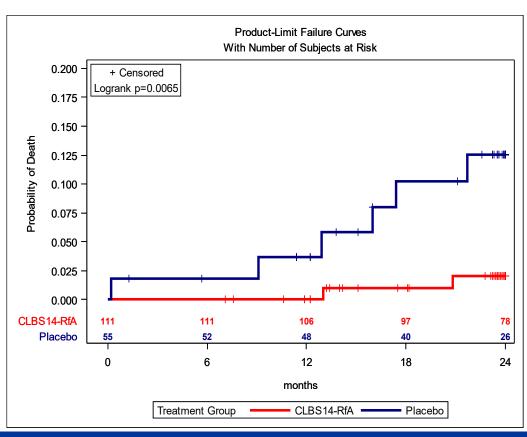
- 21-80 yrs
- CCS class III or IV Angina
- Attempted "best" medical therapy
- Non-candidate for Surgical/Perc. revasc.
- Ischemia on SPECT
- 3-10 min. mod. Bruce protocol with angina or anginal equivalent at baseline



Change in Angina Counts

Change in Exercise Capacity

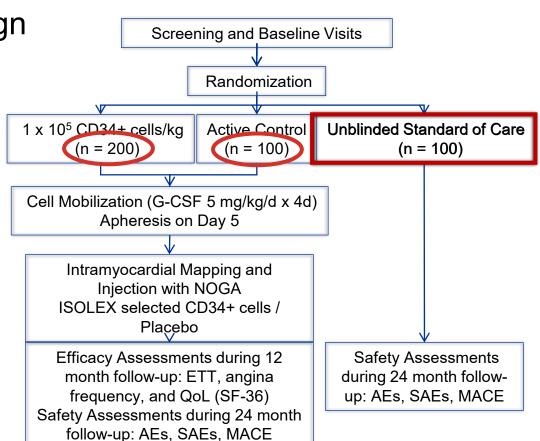
Major Adverse Cardiac Events (12 Months)


	Control	1x10 ⁵ CD34 ^{+cells} /kg	5x10 ⁵ CD34 ^{+cells} /kg	p-value*
Death	3 (5.4%)	0 (%)	0(%)	0.107
MI	7 (12.5%)	3 (5.5%)	3 (5.4%)	0.305
Death, MI	10 (17.9%)	3 (5.5%)	3 (5.4%)	0.058
Death, MI, Urgent Revasc	11 (19.6%)	5 (9.1%)	4 (7.1%)	0.106
Death, MI, Urgent Revasc, Worse CHF, ACS	15 (26.8%)	7 (12.7%)	7 (12.5%)	0.093

Pts with MACE events from start of mobilization thru 12 mo in injected pts; *= Fisher's Exact Test

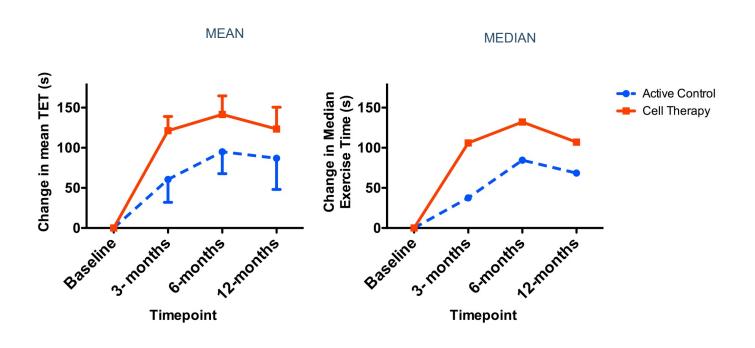
ACT-34 Mortality

RENEW Study Design

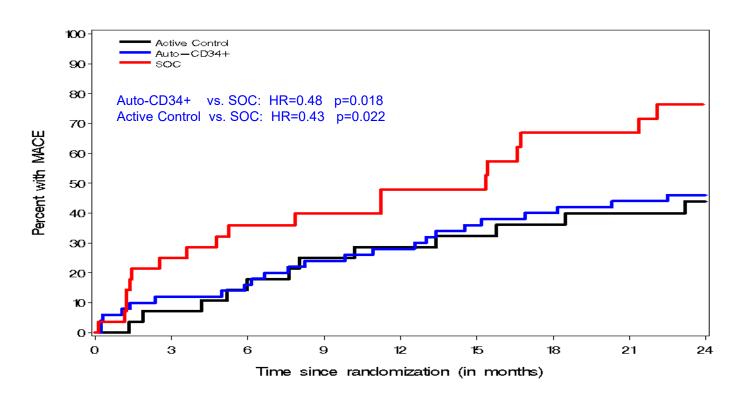

Inclusion Criteria:

- 21-80 yrs
- CCS class III or IV Angina
- Attempted "best" medical therapy
- Non-candidate for Surgical/Perc. revasc.
- Ischemia w/stress
- 3-10 min. mod. Bruce protocol with angina or anginal equivalent at baseline
- ETT reproducible <20%
- 7 angina/wk

Exclusion Criteria:


- Recent hospitalization
- Other angiogenic trials
- Must forgo other txt x 2 years

Pre-Qual Committee Central Review


RENEW: Primary Endpoint as Treated

Kaplan-Meier Curves: Cumulative Risk of MACE

RENEW Results: 2-Year MACE

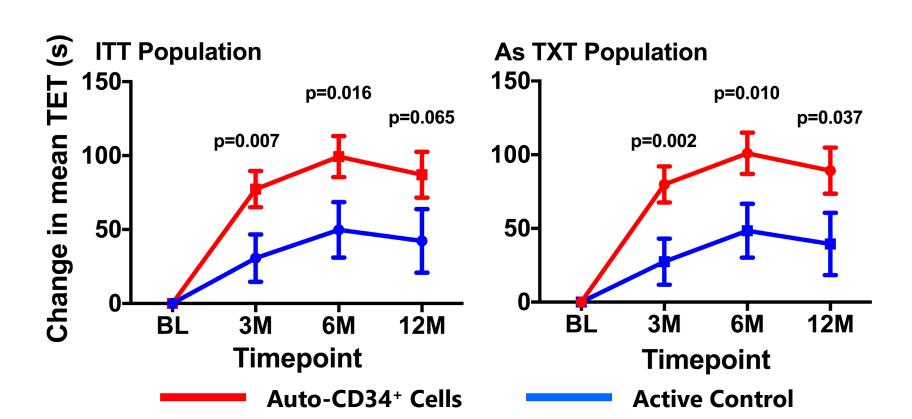
	Standard of Care (n=28)	Active Control (n=28)	CD34+ Cell Txt (n=50)	Started Mobilization but Not Injected (n=6)
Patients with MACE	19 (67.9%)	12 (42.9%)	23 (46.0%)	2 (33.3%)
Death	2 (7.1%)	3 (10.7%)	2 (4.0%)	0
MI	2 (7.1%)	3 (10.7%)	5 (10.0%)	2 (33.3%)
Perforation	0	0	2 (4.0%)	1* (16.7%)
Stroke	-	-	-	-
CV hospitalization	18 (64.3%)	9 (32.1%)	21 (42.0%)	2 (33.3%)
Ventricular arrhythmias	1 (3.6%)	2 (7.1%)	1 (2.0%)	-
MACE <2 weeks	0	0	3 (6.0%)	2 (33.3%)
MACE during follow-up	19 (67.9%)	12 (42.9%)	21 (42.0%)	2 (33.3%)

Goals: Combine patient level data from 3 trials of Auto-CD34⁺ cell therapy for refractory angina

- All trials:
 - Double-blind randomized design
 - IM injection of CD34⁺ cells vs. placebo
 - Assessed exercise capacity (ETT) and angina frequency at 3-, 6- and 12- months
 - Collected MACE to 24 months

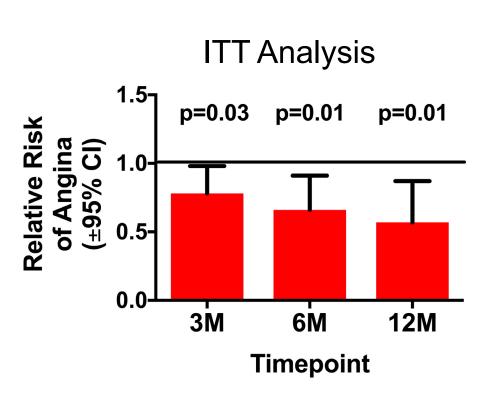
Baseline Characteristics

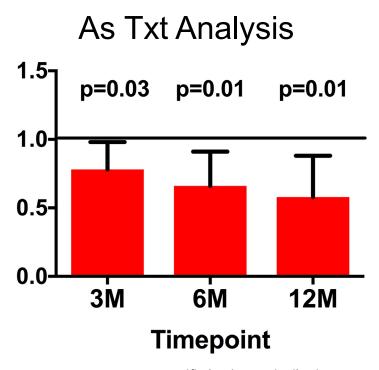
	Placebo (n=89)	CD34+ (n=187)	SOC (n=28)	Total (n=304)
Age (median)	64 (56,69)	62 (56,68)	63 (55,69)	63 (56,69)
Female	11 (12%)	30 (16%)	4 (4%)	45 (15%)
Caucasian	80 (90%)	171 (91%)	27 (96%)	278 (91%)
Diabetes	50 (56%)	95 (51%)	16 (57%)	161 (53%)
Hypertension	77 (87%)	163 (87%)	24 (86%)	264 (87%)
Hyperlipidemia	74 (83%)	154 (82%)	27 (96%)	255 (84%)
CHF	31 (35%)	50 (27%)	8 (29%)	89 (29%)
PVD	24 (27%)	44 (24%)	4 (14%)	72 (24%)
h/o PCI	78 (88%)	162 (87%)	26 (93%)	266 (88%)
h/o CABG	80 (90%)	173 (93%)	23 (82%)	276 (91%)



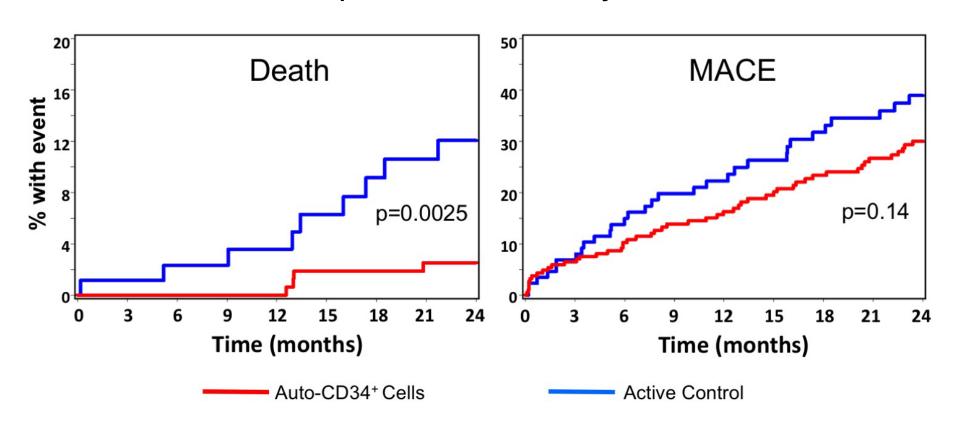
Medication use

	Placebo (n=89)	CD34+ (n=187)	SOC (n=28)	Total (n=304)
β-blockers	82 (92%)	169 (90%)	26 (93%)	277 (91%)
Nitrates	70 (79%)	138 (74%)	24 (86%)	232 (76%)
Ranolazine	29 (33%)	66 (35%)	18 (64%)	113 (37%)
Ca-blockers	34 (38%)	79 (42%)	13 (46%)	126 (41%)
Acel/ARB	47 (53%)	104 (56%)	15 (54%)	166 (55%)
Statins	70 (79%)	154 (82%)	25 (89%)	249 (82%)

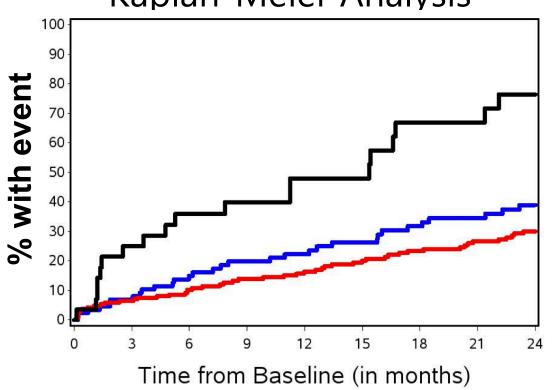



Results: Total Exercise Time

Relative Risk of Angina*

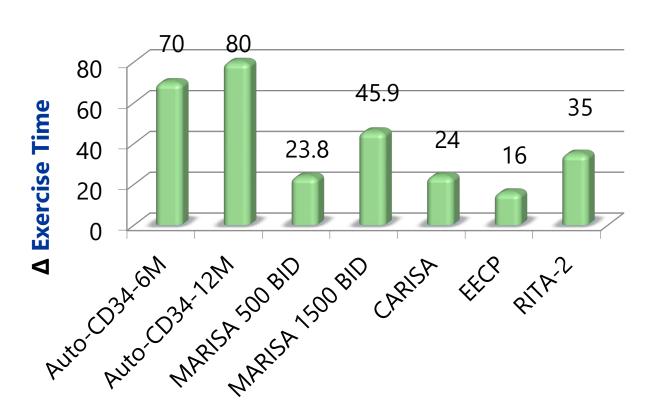


*Prespecified Poisson Distribution



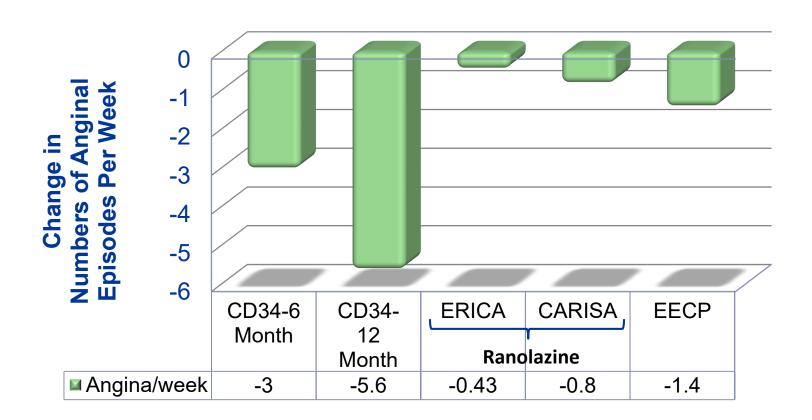
Kaplan-Meier Analysis

Active Control


Time nom baseline (in months)

Auto-CD34⁺ Cells

Open Label SOC



Efficacy Comparison: Change in ETT

Efficacy Comparison: Change in Angina Frequency

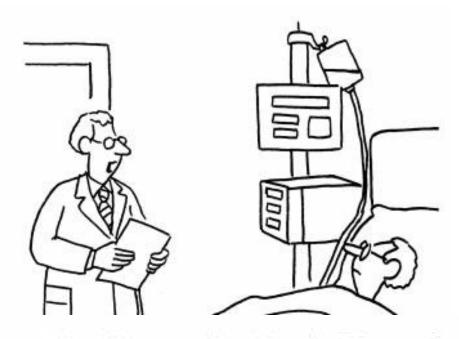
Conclusions

- CD34⁺ cells, compared with placebo injections, result in:
 - Clinically and statistically significant durable improvements in exercise capacity to at least 12 months
 - Overall improvements in angina frequency
 - MACE events favor cell therapy
 - Statistically significant improvement in mortality with cell therapy
 - SOC arm faired poorly
 - Effect larger than other accepted therapies for angina

Where are we?

In the context of developing therapies for serious unmet clinical needs, the best approach is to think of clinical and statistical plausibility together.

- ✓ Mechanistic plausibility
- ✓ Preclinical models
- ✓ Reducing risk (autologous products)
- ✓ Consistency of effect
- √ Totality of data
- √ Clinical need



Conclusions

- This type of cell therapy for refractory angina is particularly promising and may improve both functional status and mortality
- It is imperative to explore methods to bring this therapy to patients with high clinical need and limited if any other options

Duke Clinical Research Institute

"It's nothing a few stem cells and another 75 years of research can't fix."

Andreas M. Zeiher, MD
Dept. of Internal Medicine III
University of Frankfurt
Germany

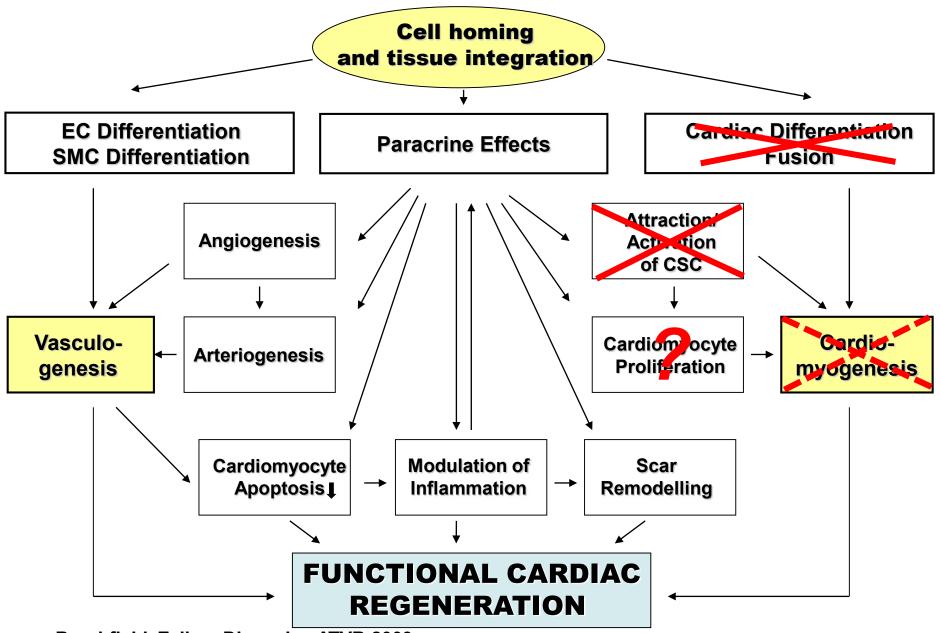
Philadelphia, 11 / 2019

Disclosure information: t2cure (co-founder, advisor)

Sanofi / Pfizer / Amgen (advisor)

Boehringer / Bayer / Servier /

Novartis / St.Jude / Daichi (Speaker)


Cell therapy of the heart: the prevailing view 2019

Putting The Cart Before The Horse

Putative mechanisms for cardiac regeneration

Burchfield, Zeiher, Dimmeler, ATVB 2009

Cell therapy in cardiovascular diseases

Refractory Angina

Acute Myocardial Infarction

 \Rightarrow

Chronic Heart Failure

Peripheral Arterial Occlusive Disease

Autologous CD34+ cell therapy in no-option refractory angina

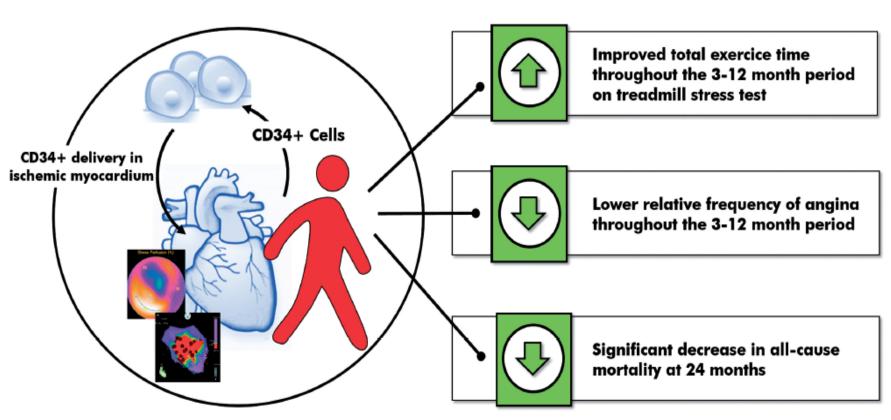
European Heart Journal (2018) 39, 2208–2216 European Society doi:10.1093/eurheartj/ehx764

Autologous CD34⁺ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials

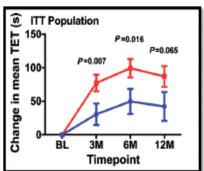
Timothy D. Henry¹*, Douglas W. Losordo², Jay H. Traverse³, Richard A. Schatz⁴, E. Marc Jolicoeur⁵, Gary L. Schaer⁶, Robert Clare⁷, Karen Chiswell⁷, Christopher J. White⁸, F. David Fortuin⁹, Dean J. Kereiakes¹⁰, Andreas M. Zeiher¹¹, Warren Sherman¹², Andrea S. Hunt¹³, and Thomas J. Povsic⁷

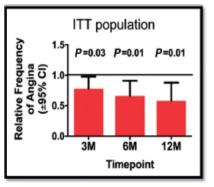
¹Cedars-Sinai Heart Institute, Los Angeles, CA, USA; ²Caladrius Biosciences, Inc., New York, NY, USA; ³Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, Minneapolis, MN, USA; ⁴Scripps Clinic Torrey Pines, La Jolla, CA, USA; ⁵Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada; ⁶Rush University Medical Center, Chicago, IL, USA; ⁷Duke University School of Medicine, Duke Clinical Research Institute, Durham, NC, USA; ⁸Ochsner Clinical School, Ochsner Medical Center, New Orleans, LA, USA; ⁹Mayo Clinic Hospital, Phoenix, AZ, USA; ¹⁰The Christ Hospital Heart and Vascular Center, Lindner Research Center, Cincinnati, OH, USA; ¹¹University of Frankfurt, Frankfurt, Germany; ¹²LoneStar Heart Inc., Irvine, CA, USA; and ¹³Shire US, Lexington, MA, USA

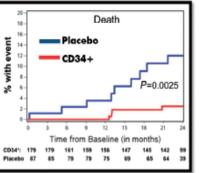
Received 14 July 2017; revised 31 August 2017; editorial decision 27 October 2017; accepted 13 December 2017; online publish-ahead-of-print 5 January 2018



Autologous CD34+ cell therapy in no-option refractory angina




CD34+ Cell Therapy for Patients with Refractory Angina


Improvement in exercise time, angina, and mortality compared to placebo

Today: Auto-CD34 Cell Therapy for Microvascular Dysfunction and Non-obstructive coronary arateries / Noel Bairey-Merz

The Future of Cell-Based Therapies

⇒ Refractory Angina = ,low-hanging fruit*

- **†** Final phase III trial for approval
- Necessity for repetitive treatment?

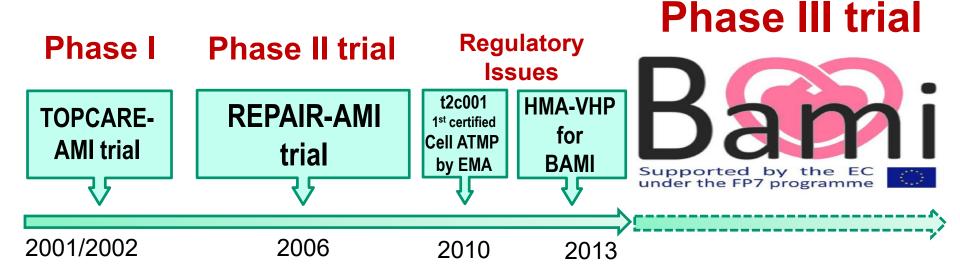
The Future of Cell-Based Therapies

Refractory Angina

Acute Myocardial Infarction

 \Rightarrow

Chronic Heart Failure


 \Rightarrow

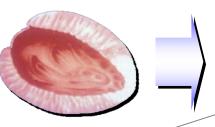
Peripheral Arterial Occlusive Disease

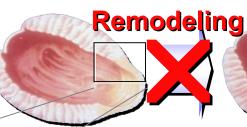
Autologous Bone-Marrow Derived Cell Therapy: A Journey of 17 Years

Circulation 2002 Circulation 2003 JACC 2004 ClinResCardiol 2011 NEJM 2006 EHJ 2007 Circulation 2007 CircHeartFail 2010 EHJ 2014

European Journal of Heart Failure (2017) 19, 1545–1550 doi:10.1002/eihf.829

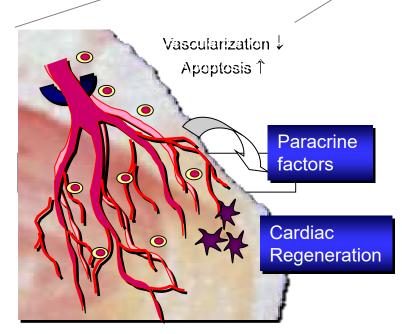
STUDY DESIGN

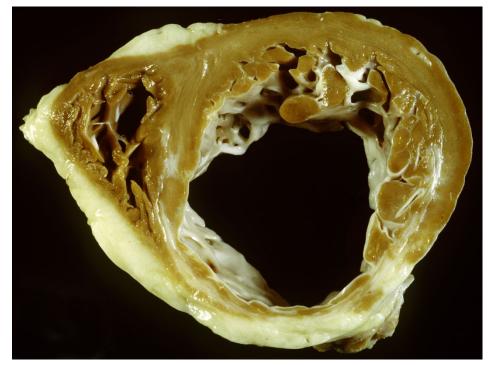

The effect of intracoronary interest of bone marrow-derived mononuclear cells on all-cause mortality in acute my coardial infarction: rationale and design of the CAMI trial


Anthony Mathur^{1*}, Rotati Varhold², Birgit Assmus³, Jozef Bartunek⁴,
Ann Belmans⁵, Halvard Bonig⁶, Flittpe Crea⁷, Stefanie Dimmeler³, Sheik Dowlut¹,
Francisco Fernándes Avilés⁸, Maluer Galiñanes⁹, David Garcia-Dorado⁹,
Juha Harck Dec.¹⁰, Jonathay Fili¹, Annette Hogardt-Noll¹², Christian Homsy¹³,
Stefan Japssens¹⁴, Petr Kala⁵, Jens Kastrup¹⁶, John Martin¹⁷, Philippe Menasche¹⁸,
Roman Miklik¹⁵, Abdul Mozid¹⁹, J. Alberto San Román², Ricardo Sanz-Ruiz⁸,
Michal Tendera²⁰, Wojtek Wojakowski²⁰, Seppo Ylä-Herttuala¹⁰, and
Andreas Zeiher³

Regenerative therapies in STEMI: do we still need it in 2020 ?

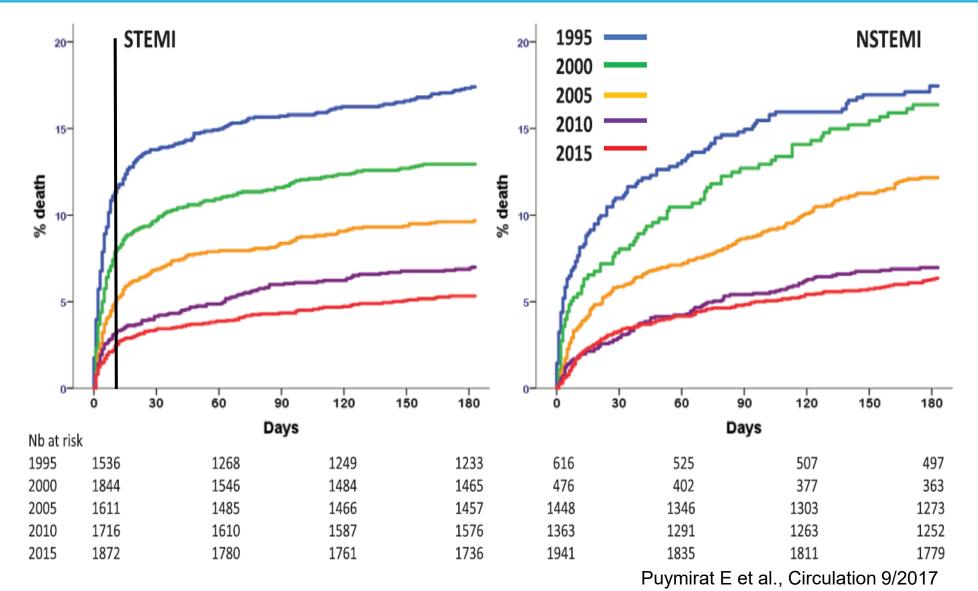
Acute Myocardial Infarction





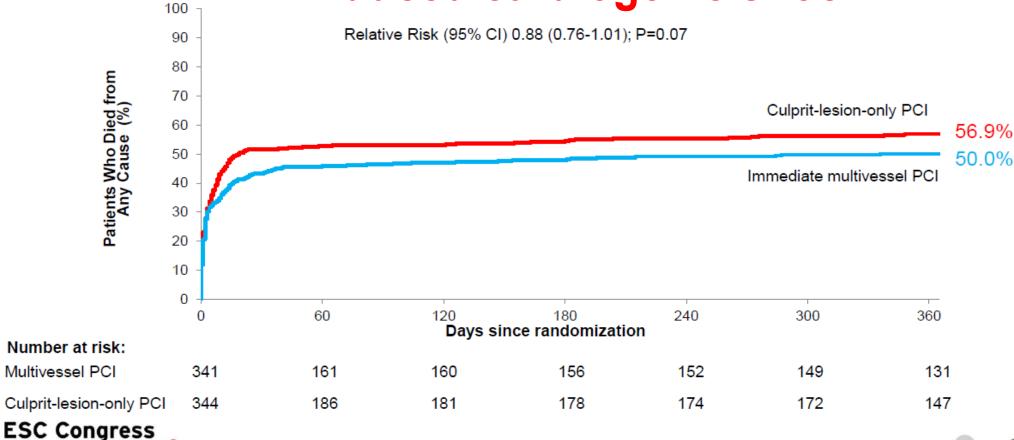
infarct expansion

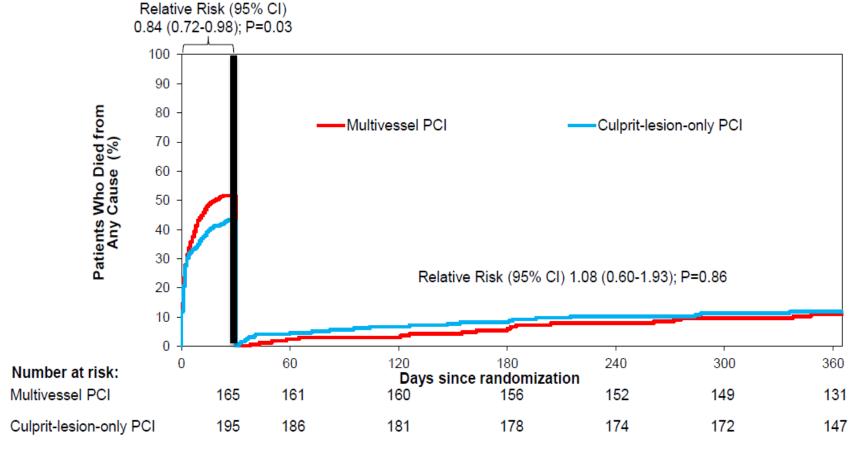
chronic LV- dilatation



6-months mortality over the past 20 years: FAST-MI program

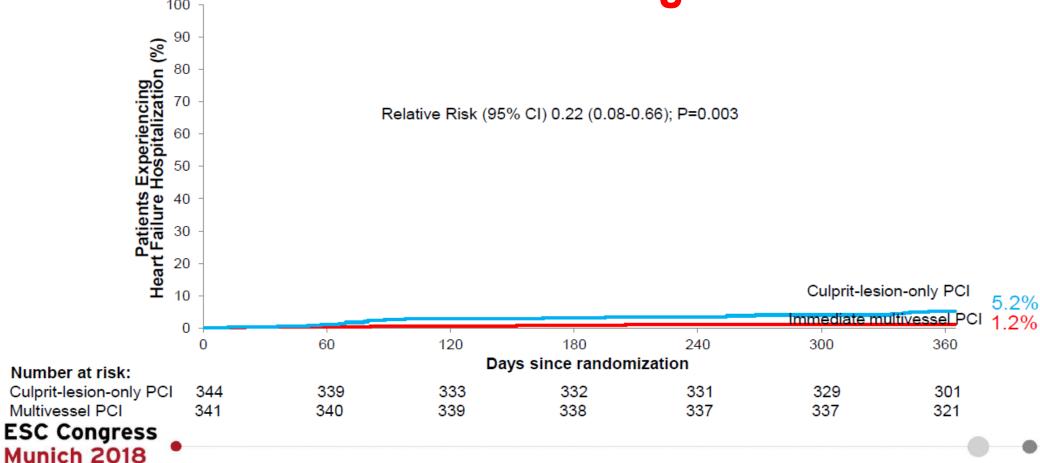
Munich 2018


Need for regenerative therapies after cardiogenic shock? Insights from the CULPRIT-SHOCK trial

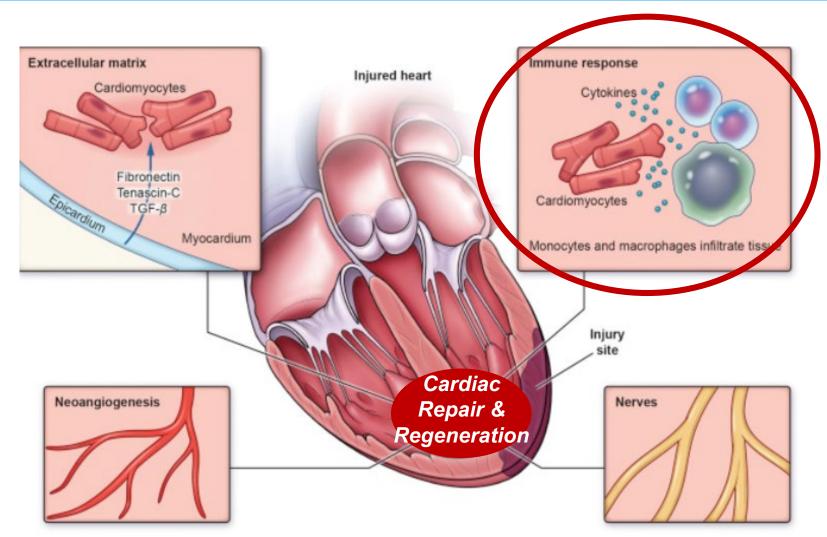

Need for regenerative therapies after cardiogenic shock? Insights from the CULPRIT-SHOCK trial

1-Year All-Cause Mortality – Landmark Analysis

ESC Congress Munich 2018



Need for regenerative therapies after cardiogenic shock? Insights from the CULPRIT-SHOCK trial


1-Year Rehospitalization Congestive Heart Failure after AMI-induced cardiogenic shock!

Regulation of post-infarction remodelling

Uygur & Lee, Dev Cell 2016

The Future of Cell-Based Therapies

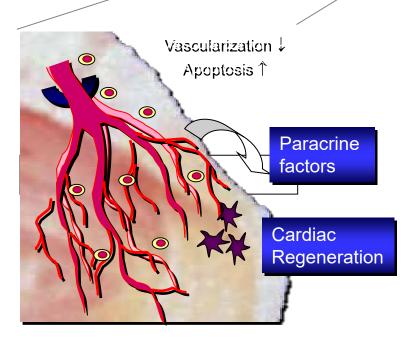
Refractory Angina

Acute Myocardial Infarction

Chronic Heart Failure

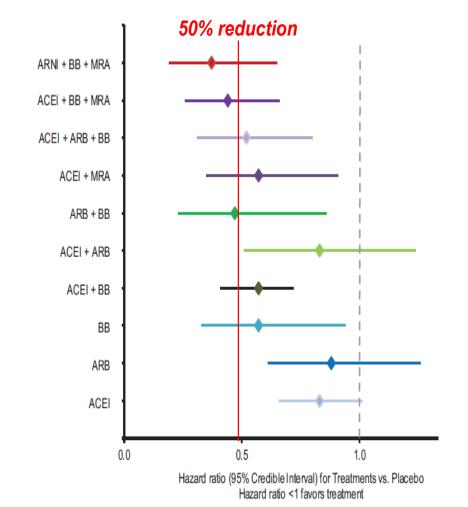
Peripheral Arterial Occlusive Disease

Challenges of Cell Therapy in Chronic Post-Infarction Heart Failure


Reverse LV Remodeling

Chronic Heart Failure

Historical perspective of pharmacological treatment strategies for heart failure (HFrEF)

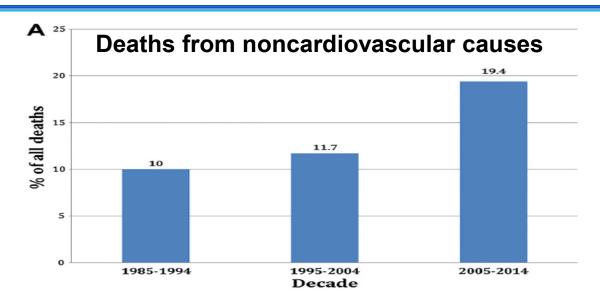

Heart Failure 1987 - 2017

ARNI

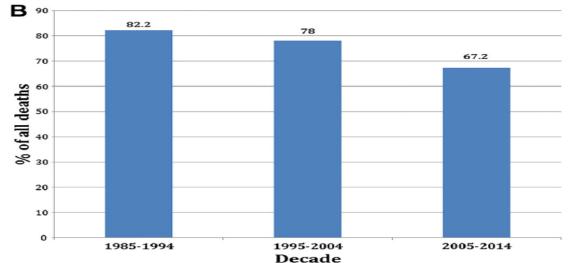
Mineralocorticoid receptor antagonists

Beta blocker

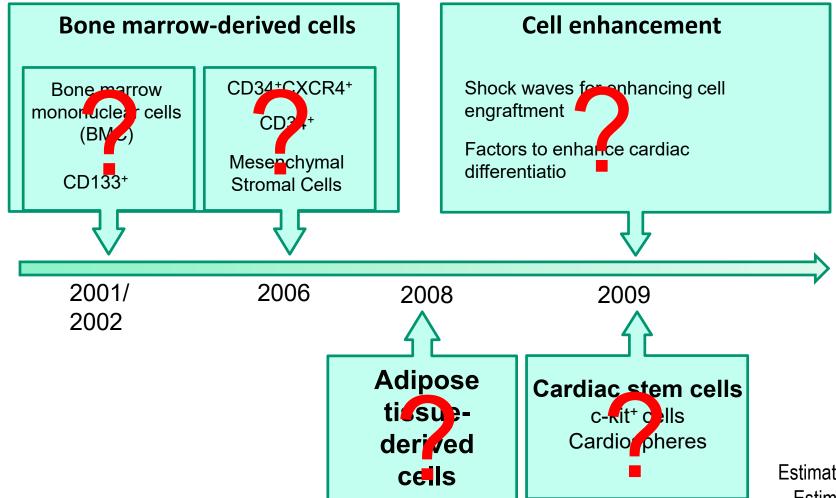
1987: ACE inhibitor



Circ Heart Fail 2017



Trends over time in proportion of all deaths in HFrEF



Cell Therapy for Chronic Heart Failure

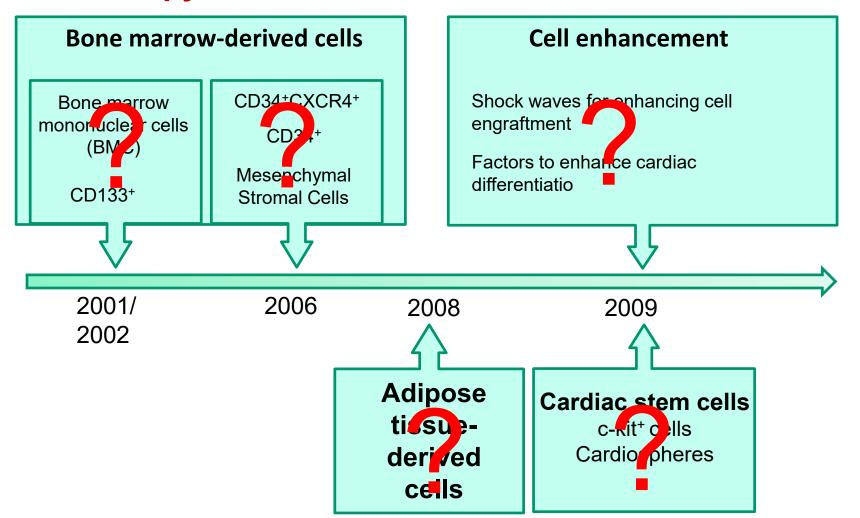
Cell therapy for chronic heart failure – in clinical trials

Phase II/III trial (ongoing)

DREAM-HF Mesoblast

600 participants

Double-blind,
Randomized, Shamprocedure-controlled,
Parallel-Group Efficacy
and Safety Study of
Allogeneic Mesenchymal
Precursor Cells
(Rexlemestrocel-L) in
Chronic Heart Failure Due
to LV Systolic Dysfunction
(Ischemic or Nonischemic)


Actual Study Start Date :January 2014
Estimated Primary Completion Date :December 2019
Estimated Study Completion Date :December 2019

Regenerative Therapeutic Strategies for Chronic Heart Failure

Cell therapy for chronic heart failure – in clinical trials

Future

Other stem cells? (e.g. iPS, ESC)

Direct reprogramming?

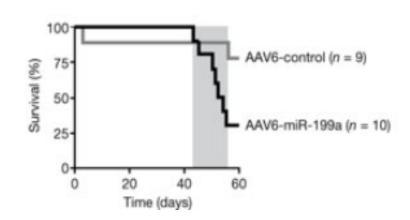
microRNA therapeutics?

The double-edged sword of pro-regenerative strategies

HEART

Targeting microRNAs can enchance proliferation and regeneration

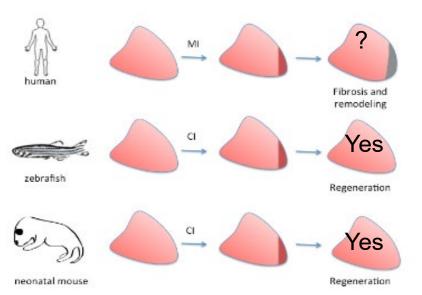
TUMOR


Targeted regenerative microRNAs are often tumor suppressor

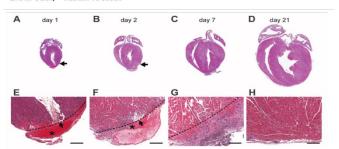
Letter Published: 08 May 2019

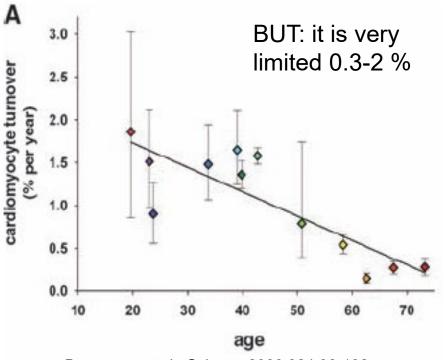
MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs

Khatia Gabisonia, Giulia Prosdocimo, Giovanni Donato Aquaro, Lucia Carlucci, Lorena Zentilin, I Secco, Hashim Ali, Luca Braga, Nikoloz Gorgodze, Fabio Bernini, Silvia Burchielli, Chiara Collesi, Lorenzo Zandonà, Gianfranco Sinagra, Marcello Piacenti, Serena Zacchigna, Rossana Bussani, F A. Recchia & Mauro Giacca



The heart is a regenerating organ


Endogenous cardiac regeneration:


Sanchez-Iranzo et al ESC online

Transient Regenerative Potential of the Neonatal Mouse Heart

Enzo R. Porrello, ¹ Ahmed I. Mahmoud, ² Emma Simpson, ³ Joseph A. Hill, ^{1,2} James A. Richardson, ^{1,3} Eric N. Olson. ^{1,4} Hesham A. Sadek ^{2,4}

Myocyte turn over per year

Bergmann et al., Science 2009 324:98-102

The human heart is regenerating BUT: The extent of regeneration is very limited particularly during aging